

by Schneider Electric

# SimSci<sup>®</sup> PRO/II<sup>®</sup> 10.0 Electrolyte User Guide

July 2016

All terms mentioned in this documentation that are known to be trademarks or service marks have been appropriately capitalized. Schneider Electric Software, LLC. cannot attest to the accuracy of this information. Use of a term in this documentation should not be regarded as affecting the validity of any trademark or service mark.

ActiveFactory, ArchestrA, ARPM, AssayCentral, Autonomous, Avantis, Avantis.PRO, Connoisseur, CrudeManager, CrudeSuite, DATACON, DATAPREP, DT Analyst, DYNSIM, DYNSIM Power, Esscor, EYESIM, Factelligence, FactorySuite, FactorySuite A<sup>2</sup>, Foxboro, Foxboro Evo, FSIM Plus, HEXTRAN, Hot Links, I/A Series, IMPACT, IMServ, InBatch, InControl, Industrial Portal, IndustrialSQL Server, InFusion, INPLANT, InSQL, IntelaTrac, InTouch, IPact, Invensys, Logic Validator, MBM, NETOPT, PIPEPHASE, PRO/II, PROVISION, QI Analyst, ROMeo, SCADAlarm, SIM4ME, SimCentral, SimSci, SimSci-Esscor, Skelta, Skelta BPM.NET, Skelta Sharepoint, Skelta Sharepoint Accelerator, Spiral Software, SuiteVoyager, TACITE, Tactical Batch, The Simulator, TRISIM Plus, VISUAL FLARE, VISUAL FLOW, VISUAL FLOW SUITE, VISUAL NETWORK, Visual Solutions, VOYAGER, WindowMaker, WindowViewer, Wonderware, Wonderware InTouch, and ZI ZHI are trademarks of Schneider Electric SE, its subsidiaries and affiliated companies.

© 2016 by Schneider Electric Software, LLC. All rights reserved.

No part of this documentation shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Schneider Electric Software, LLC. No liability is assumed with respect to the use of the information contained herein.

Although precaution has been taken in the preparation of this documentation, Schneider Electric Software, LLC assumes no responsibility for errors or omissions. The information in this documentation is subject to change without notice and does not represent a commitment on the part of Schneider Electric Software, LLC. The software described in this documentation is furnished under a license agreement. This software may be used or copied only in accordance with the terms of such license agreement.

ArchestrA, Avantis, DYNSIM, EYESIM, Foxboro, Foxboro Evo, I/A Series, InBatch, InduSoft, IntelaTrac, InTouch, PIPEPHASE, PRO/II, PROVISION, ROMeo, Schneider Electric, SIM4ME, SimCentral, SimSci, Skelta, SmartGlance, Spiral Software, VISUAL FLARE, WindowMaker, WindowViewer, and Wonderware are trademarks of Schneider Electric SE, its subsidiaries, and affiliated companies. An extensive listing of Schneider Electric Software, LLC trademarks can be found at: <u>http://software.schneider-</u>electric.com/legal/trademarks/. All other brands may be trademarks of their respective owners.

Schneider Electric Software, LLC 26561 Rancho Parkway South Lake Forest, CA 92630 U.S.A. (949) 727-3200

http://software.schneider-electric.com/

## Contents 1

## Chapter E1 Electrolyte Module

| Overview                                    | . E1-1          |
|---------------------------------------------|-----------------|
| How to Use the Electrolyte Module in PRO/II | . E1 <b>-</b> 5 |
| GUI Access to Electrolytes                  | . E1 <b>-</b> 7 |
| Keyword Access to Electrolytes              | E1-12           |
| Application Guidelines                      | E1-19           |
| Examples                                    | E1-23           |
| References                                  | E1-24           |

## Chapter E2 Electrolyte Models

| Overview                                           | . E2-1          |
|----------------------------------------------------|-----------------|
| Pregenerated Models                                | . E2-1          |
| User-Added Models                                  | . E2-8          |
| Electrolyte Model Index                            | . E2 <b>-</b> 9 |
| Summary of Electrolyte Models                      | E2-12           |
| Alphabetical Component Index of Electrolyte Models | E2-40           |

## Chapter E3 Creating a User-Added Electrolyte Model

| Available Tools for Creating Electrolyte Models | E3-1 |
|-------------------------------------------------|------|
| Compatibility with Previous Versions of PRO/II  | E3-2 |

## Chapter E4 Electrolyte Effects In Simulations

| Overview H                                       | E <b>4-</b> 1 |
|--------------------------------------------------|---------------|
| General Considerations H                         | E <b>4-</b> 1 |
| Basic Unit Operations Basic Unit Operations      | E <b>4-</b> 3 |
| Considerations Regarding Transport Properties E4 | 4-10          |
| Output Considerations E4                         | 4-11          |
| Speed Considerations                             | 4-11          |

#### Index 1

## Chapter E1 Electrolyte Module

## Overview

This chapter describes the Electrolyte add-on module available for use in PRO/II. It describes electrolyte-related data entry using PRO-VISION, the Graphical User Interface (GUI). It also describes keyword entries in the General, Component, and Thermodynamic sections of input data.

## **Contents of the Electrolyte Module**

The Electrolyte Module provides a set of programs, data libraries, and other files, including the following:

- The Lite Public Electrolyte Library provides aqueous data for over 2300 electrolyte components. This library is available only with the Electrolyte Module. It also includes the GeoChem bank provides aqueous data for over 140 additional mineral and metallic components frequently of interest.
- Version 7.0 of the Electrolyte Calculation engine from OLI System, Inc.
- Chemistry Wizard from OLI Systems, Inc., for creating useradded electrolyte models, private databanks, and executing standalone flash drum calculations and sensitivity analyses.
- 40 different aqueous electrolyte models arranged in 8 groups. Three versions of each model are provided.
  - The first version was created using Chemistry Wizard 3.1 for use in version 7.0 of the OLI calculation engine.
  - The second version was created using Chemistry Wizard version 1.0 for use in version 6.6 of the OLI calculation engine.
  - The third version was created by the (now obsolete) Electrolyte Utility Package (EUP) for use in version 5.6 of the OLI calculation engine.

The OLILIB data bank is part of the standard PROII component library, and not actually part of the Electrolyte module. It contains all necessary data for almost 800 electrolyte species.

#### **Capabilities of the Electrolyte Module**

The Electrolyte Module supports only aqueous electrolyte models. These systems typically contain water with up to about 30 percent solutes.

The Electrolyte Module includes only the *Lite Public Electrolyte Library* that provides aqueous data for about 2300 components and for about 140 *GeoChem* components.

#### **Compatibility of PRO/II With Older Electrolyte Versions**

PRO/II, the Electrolyte Module, and the OLI Calculation Engine installed for the Electrolyte Module are compatible with all earlier versions of electrolyte models previously supported by PRO/II.

Earlier versions of pre-generated aqueous models are based on older data file formats. These are exemplified by the older versions of the electrolyte models (described above) included in the Electrolyte Module. While PRO/II still is able to support them, continuing evolution of the format may prevent continued support in the future. For this reason, customers should consider upgrading to the newest version of the data files at their earliest convenience.

Although older versions of aqueous electrolyte models are included and function properly, the programs that created them no longer are available. When creating new models, users should use the current Chemistry Wizard version 3.1.

#### **Alternatives to the Electrolyte Module**

OLI Systems, Inc. recently introduced their Mixed Solvent Electrolytes package (MSE) that handles stronger concentrations of solutes. They also offer an expanded component library, currently containing data for over 5100 components.

PRO/II is fully capable of utilizing all the features of the MSE package and the expanded libraries from OLI. This still includes support for all existing aqueous models. Separate licensing is required.

Contact your PRO/II representative for licensing information and further technical details.

## **Included Pre-Built Electrolyte Thermodynamic Models**

Eight groups of electrolyte models are available after installing the Electrolyte Module. When none of the pre-built models are satisfac-

tory for your needs, use the Chemistry Wizard to create custom models.

PRO/II simulates aqueous systems in a wide range of industrial applications. The models apply to fixed component lists with a predefined set of thermodynamic methods for K-values, enthalpies, and densities. Table E2-2 on page E2-3 lists all 40 electrolyte models available for the following eight electrolyte groups in this release:

| Amine Systems      | Caustic Systems         |
|--------------------|-------------------------|
| Acid Systems       | Benfield Systems        |
| Mixed Salt Systems | Scrubber Systems        |
| Sour Water Systems | LLE and Hydrate Systems |

The Graphical User Interface uses these groups to organize the 40 pre-generated electrolyte models for convenient selection.

#### **Guidelines For Using Electrolyte Thermodynamics**

Electrolyte models include calculation methods for all essential properties. Proper usage requires observing these restrictions:

- Always declare an electrolyte model as a system (e.g., METHOD SYSTEM=DIPA70).
- It is not possible to define individual methods for K-value, enthalpy, or density when using electrolyte thermodynamic models.
- Electrolyte models cannot be used to calculate the following:

➢Non-aqueous systems.

>Free water decant (i.e., non-rigorous LLE)

≻Water dew points

≻Hydrocarbon dew points

≻Entropy and heat capacity

 Aqueous Electrolyte models cannot be used to calculate nonaqueous system. All the pre-generated models in the Electrolytes Module are aqueous electrolyte systems.

- Be careful when using both non-electrolyte and electrolyte thermodynamic methods in the same simulation.
  - The PRO/II electrolytic models use a different enthalpy basis from that used for other thermodynamic systems. When both are used, PRO/II automatically takes care of this difference, but it may appear to be confusing.
  - To avoid this, select the electrolyte enthalpy method for all non-electrolyte thermodynamic systems in a mixed application. All systems then use the electrolyte model basis.

#### Unit Operations that support the Electrolyte Module

When electrolyte components are present in a simulation, PRO/II calls the OLI calculation engine to calculate all their thermodynamic properties. This is essentially a flash calculation algorithm the behaves somewhat differently than the internal PRO/II flash. Because of the differences, and due to the data requirements of some unit operations, full support for electrolytes is inappropriate or partially restricted in some unit operations.

The following is a partial listing of unit operations that support the Electrolyte add-on:

| Flash drum                                           | Mixer                                            | Calculator                |
|------------------------------------------------------|--------------------------------------------------|---------------------------|
| Column ELDIST<br>algorithm                           | Pipe                                             | Heating/Cooling<br>curves |
| Controller                                           | Pump                                             | Stream Calculator         |
| Optimizer                                            | Splitter                                         | Valve                     |
| Heat exchangers<br>Simple HX,<br>Rigorous HX,<br>LNG | Reactors<br>Conversion,<br>Equilibrium,<br>Batch |                           |

Refer to Chapter E4, *Electrolyte Effects In Simulations*, for a discussion of the limitations of using electrolytes in PRO/II. The subsection "Basic Unit Operations" on page E4-3 specifically addresses concerns for individual unit operations, including descriptions of electrolyte-specific features and PRO/II features not available for units using electrolyte thermodynamic methods. Summaries of keyword input files for the Flash Drum (as an example of a standard PRO/II unit with a few changes in functionality) and for the ELDIST Distillation unit (which is specially designed for PRO/II Electrolytes (2)). Examples of keyword input files for units using Electrolyte thermodynamic methods also are provided.

## How to Use the Electrolyte Module in PRO/II

#### Preliminaries

The following activities must be completed before attempting to model electrolyte components in a simulation.

- 1. Install the Electrolyte Add-on Module and the optional Chemistry Wizard program. Installation details are provided when the licenses are acquired. More general information about installing optional modules is available in the *Getting Started Guide*.
- 2. Install at least one electrolyte thermodynamic model in the form of a data base (.dbs) file. There are three options for accomplishing this:

#### Use a pre-generated model

The Electrolyte module installed with PRO/II includes 40 *pregenerated* data base files. Three versions of each data base file are provided. Refer to "Pregenerated Models" in Chapter E2, *Electrolyte Models*.

#### Use an older existing user-defined model

Early versions of PRO/II allowed user-defined electrolyte models having a pre-defined name M41.dbs through M60.dbs. If you still have some of these files from previous versions, PRO/ II still can use them.

#### Create and use a new user-defined model

Use the Chemistry Wizard program to create a new userdefined electrolyte model. Complete information is available in the *OLI Chemistry Wizard User Guide*, located in the \Manuals\OLI\ directory installed with PRO/II. Also refer to "User-Added Models" on page E2-8 to learn about some advantages gained by using this tool.

## **Overview of Using Electrolytes In A Simulation**

Once at least one electrolyte data base file is available, it is quite straightforward to use it in a simulation. The following actions usually are involved.

- 1. Declare an Electrolyte thermodynamic method in an existing or new simulation.
- 2. Generate the electrolyte components from the electrolyte model. This is automatic in keywords and Run Batch. A dialog provides this in the GUI.
- 3. Add generated electrolyte components to at least one stream.
- 4. Configure at least one stream containing electolytes as a feed to at least one unit operation that supports electrolytes.
- 5. Assign electrolyte thermodynamic methods to appropriate unit operations.

The following sections describe each of these steps.

## **GUI** Access to Electrolytes

## Set Data Bank Search Hierarchy

When using Electrolyte thermodynamic methods with library components, the OLILIB component databank must be searched first and the SIMSCI databank second. To set this hierarchy,

Click the *Hierarchy* button highlighted in the *Component* Selection dialog shown in Figure E1-1.

| SIMSCI - Component Selection                                                       |  |  |  |  |
|------------------------------------------------------------------------------------|--|--|--|--|
| UOM Range Help Overview Status                                                     |  |  |  |  |
| Component Selection<br>From System or User-generated Databank<br>Component: Add -> |  |  |  |  |
| Select from Lists                                                                  |  |  |  |  |
| PetroleumUser-definedPolymer                                                       |  |  |  |  |
| Databank Hierarchy Component Phases                                                |  |  |  |  |
| OK Cancel                                                                          |  |  |  |  |

Figure E1-1: Changing the Data Bank Hierarchy

As shown in Figure E1-2, Highlight the PROII\_10.0:OLILIB entry in the Available Databanks: field; then click Insert Before to move the OLILIB data bank to the top of the Current Search Order.

| Component Selection - Databank Search Order       |           |  |  |
|---------------------------------------------------|-----------|--|--|
| UOM Range <b>Help</b>                             |           |  |  |
| Databank Type: Pure Component Thermo Data Manager |           |  |  |
|                                                   |           |  |  |
|                                                   |           |  |  |
| Available Databanks:<br>[PROII_9.1:0LILIB         |           |  |  |
|                                                   |           |  |  |
|                                                   |           |  |  |
| 1                                                 |           |  |  |
| Insert Before Insert After Remove                 |           |  |  |
| Current Search Order:                             |           |  |  |
| PROIL_9.1:SIMSCI<br>PROIL_9.1:PROCESS             | Move Up   |  |  |
|                                                   | Move Down |  |  |
|                                                   |           |  |  |
|                                                   |           |  |  |
| Restore Default                                   |           |  |  |
| OK Cancel                                         |           |  |  |
| Exit the window after saving all data             |           |  |  |

## Figure E1-2: Adding Available Data Banks

See the online help for more information on setting the databank search order hierarchy.

Notice in Figure E1-2 that an additional user-added library, MyElec1, containing data bank NEWELEC1, is highlighted in the *Available* list. custom libraries such as this also may be added to the search order. Refer to the *TDM User Guide* to learn about creating custom component data libraries.

#### **Select An Electrolyte Model**

The next essential step is to add an electrolyte model as a PRO/II thermodynamic METHOD set. If it is the only METHOD set in the simulation, or if it is designated the default METHOD set, all unit operations use it by default.



Click the *Thermodynamics Data* button on the tool bar to display the *Thermodynamics Data* dialog box (Figure E1-3).

| SIMSCI - Thermodynamic Data                                                                                                                                                                                                                                                                                                                           | 0.0467.60       | CAR DOM: N.C. A. D. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|
| UOM Range <b>Help</b>                                                                                                                                                                                                                                                                                                                                 | Overview Status | Notes               |
| Selection of Property Calculation System         Category:       Electrolyte System:         Most Commonly Used       Acid         All Primary Methods       Acid         Equations of State       Electrolyte Model:         Liquid Activity       Beneralized Correlations         Special Packages       Cl270         Electrolyte       ACID 7001 |                 |                     |
| Actions for Selected Property Calco<br>Modify Del                                                                                                                                                                                                                                                                                                     |                 | Duplicate Rename    |
| Import Component and Thermodynamic Data from External Flowsheet or Input File Browse Extract                                                                                                                                                                                                                                                          |                 |                     |
| OK Cancel Select a thermodynamic property calculation system                                                                                                                                                                                                                                                                                          |                 |                     |

Figure E1-3: Thermodynamic Data Dialog Box

- Select *Electrolyte* in the *Category* list.
- Select a group from the *Electrolyte System*: drop down list box
- Choose an electrolyte model from the *Electrolyte Model*: drop down list box
- Click the *Add* button to add the model to the simulation.
- Click OK to save the model as part of the simulation, and to generate the electrolyte components.

#### **Generate Electrolyte Components**

Generating electrolyte components means extracting electrolyte data from the thermodynamic METHOD set and configuring it in a form that is usable by PRO/II. In Run Batch and Keyword operation, generation always is automatic.

In the GUI, a dialog provides the option to generate the electrolyte components automatically when clicking the OK button (Figure E1-3) after an electrolyte model is selected. Figure E1-4 illustrates the dialog.

ELECTROLYTES

## Figure E1-4: Generating Components From Electrolyte

| Electro | Electrolyte Component Generation                                                                                                                                                                                                                                                        |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ?       | Electrolyte components will be automatically generated<br>before the calculations begin.<br>They may be generated on demand from the "Generate Electrolyte<br>Components" option in the Input menu.<br>Do you want to perform the electrolyte component generation<br>calculations now? |  |  |
|         | Yes No                                                                                                                                                                                                                                                                                  |  |  |

Thermodynamics

>To defer generation, select "NO" in response to this query. This allows on-demand generation at a later time.

To generate the electrolyte components on demand:

Select Generate Electrolyte Components from the Input menu.

All electrolyte components for the flow sheet (including compounds and solid precipitates) are generated. There are no other options. Also, if this step is omitted, PRO/II always generates electrolyte components automatically before the simulation run.

Once the components are generated, no changes are allowed in the component slate. Deleting an electrolyte model from the active thermodynamic sets invalidates all electrolyte components and displays an information dialog.

#### Adding Electrolyte Data Base Files To A Simulation

To add your own models, specifically suited to your application, use Chemistry Wizard 3.1 from OLI Systems, Inc. This generates data base (*.dbs*) files suitable for use by PRO/II. To use the data base file in a simulation:

- Click the Modify... button shown at lower-left in Figure E1-3 to open the Thermodynamic Data -Modification data entry window.
- >As shown in Figure E1-5, the DBS File Name: field allows adding a data base file created with the *Chemistry Wizard*. The

associated *Browse*... button provides a convenient means of navigating to the data base file.

*Figure E1-5: Adding an Electrolyte file to a Thermodynamic Method* 

| Thermodynamic Data - Modification             |                                       |       |                         |  |
|-----------------------------------------------|---------------------------------------|-------|-------------------------|--|
| UOM Range Help Overview                       |                                       |       |                         |  |
| Modifying thermodynamic s                     | Modifying thermodynamic system USER01 |       |                         |  |
| Property:                                     | Current Method:                       |       | Property-specific Data: |  |
| K-value (VLE)                                 | USER                                  | ~     | Enter Data              |  |
| K-value (LLE)                                 | None                                  | *     | Enter Data              |  |
| K-value (SLE)                                 | None                                  | *     | Enter Data              |  |
| Liquid Enthalpy                               | USER                                  | *     | Enter Data              |  |
| Vapor Enthalpy                                | USER                                  | ~     | Enter Data              |  |
| Liquid Density                                | USER                                  | ~     | Enter Data              |  |
| Vapor Density                                 | USER                                  | *     | Enter Data              |  |
| Vapor Fugacity (Phi)                          | Ideal                                 | *     | Enter Data              |  |
| Liquid Entropy                                | None                                  | *     | Enter Data              |  |
| Vapor Entropy                                 | None                                  | *     | Enter Data              |  |
| Transport Properties                          | Refinery Inspection Prop              | perti | es                      |  |
|                                               |                                       |       |                         |  |
| Water Options User-defined Properties         |                                       |       |                         |  |
| DBS File Name: C:\SIMSCI\Proji82\User\MYELEC1 |                                       |       |                         |  |
| Browse                                        |                                       |       |                         |  |
|                                               |                                       |       |                         |  |
| OK Cancel                                     |                                       |       |                         |  |
|                                               |                                       |       |                         |  |

Click OK to save the selection and close the window.

#### Electrolyte Print Options Via the GUI

Calculated quantities unique to electrolyte applications can be printed in the output report of a simulation. From the GUI,

Navigate to Output menu -> Report Format -> Miscellaneous data

## Figure E1-6: Electrolyte PRINT ION Options

| PRO/II - Miscellaneous Report Options                                                                                                                  |      |        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|--|
| UOM Range                                                                                                                                              | Help |        |  |
| <ul> <li>Print Calculation Sequence Map in the Output</li> <li>Partial te Specific Output</li> <li>Complete</li> <li>Product Stream Scaling</li> </ul> |      |        |  |
| OK                                                                                                                                                     |      | Cancel |  |
| Select the electrolyte specific output                                                                                                                 |      |        |  |

Place a check mark in the check box to activate or change the ION report option. (The figure is a partial representation of *Miscellaneous Report Options* dialog.)

## Keyword Access to Electrolytes

This section discusses the electrolytes-specific keywords in the order in which data sections appear in a keyword input file. All these options are analogous to the options described above for the Graphical User Interface.

#### Electrolyte Print Options Via Key Words

TITLE ...

#### PRINT ION= PARTIAL or NONE or ALL

In a keyword input file, use the ION keyword on the PRINT statement in the *General Data* category of input data. No other entries on the PRINT statement are unique to electrolytes.

The ION entry has three options: ION=NONE or PART or ALL. The default is PART.

- **NONE** No electrolyte-specific output is printed.
- **PART** Adds Liquid Rates table(s) to the Stream Component Rates section(s) of the output. This table gives the flow rates for ionic and/or other true species in the aqueous solution. For ELDIST columns only, this adds tables Tray Compositions for True Solution Species, Tray Liquid pH and Ionic Strength, and Tray Component Scaling Indices.

**ALL** Gives all output given by PART option. Adds *Electrolyte Thermo Summary* section of the output. This section gives the equilibrium phases and phase compositions obtained from electrolyte flash calculations. Aqueous solution compositions are reported as molalities for the true chemical species. Also given are values for activity and fugacity coefficients as well as equilibrium constants. Adds *Thermo Notes* section to output. This section gives explanatory notes useful for the interpretation of the quantities given in the *Electrolyte Thermo Summary*.

#### **Electrolyte Component Data**

#### COMPONENT DATA ...

LIBID i, compID {, libno, name / ...} & BANK=LibName:BankName {,...}

| er.<br>y<br>o<br>ter |
|----------------------|
| l                    |
| ta                   |
|                      |
|                      |
| nts.                 |
| al,                  |
|                      |
| as                   |
|                      |
|                      |
| w).                  |
| ).                   |
|                      |

Components in OLI's databanks that are not included in the SIMSCI banks are available in the OLILIB bank. For electrolyte applications, the recommended bank search order is OLILIB first and SIMSCI second. This search order is used as the default whenever an electrolyte thermodynamic method is used.

Use the BANK entry on the LIBID statement of Component Data to declare the component library search order. When using only banks form the default library, only the bank names are required on the BANK entry:

## Example A: Minimum declaration of PROII Data banks only LIBID 1, H2O / 2, NACL, BANK=OLILIB,SIMSCI {,...}

The full form of Bank= LibraryName:bankName must be used to access banks from other libraries.

#### Example B: Full declaration of PROII data banks only

LIBID 1, H2O / 2, NACL, & BANK=PROII\_10.0:OLILIB, PROII\_10.0:SIMSCI {,...}

Adding user-added data banks to the search order requires using the full form. This form includes the library name and data bank name. The following example adds bank NEWELEC1 from library MYELEC as the first data bank in the search order, and with the PROII OLILIB as the second bank.

#### Example C: Declaration of user-added library and data bank

LIBID 1, H2O / 2, NACL, & BANK=MYELEC:NEWELEC1, PROII\_10.0:OLILIB, ...

Component names for the electrolyte models are listed in the "Summary of Electrolyte Models" on page E2-12. The names in these lists are printed as they should be entered in the Component Data section on the LIBID statement. However, a Pure Component Library name, as given in the *SIMSCI Component and Thermodynamic Data Reference Manual*, Chapter 1.4, *Pure Component Library–Alpha Sort*, and Chapter 1.5, *Pure Component Library– Formula Sort*, can be used instead of a corresponding electrolyte model component name. For example, you could enter CAHYDROX on the LIBID statement in place of the name CAOH2 when using the electrolyte model SCRU.

*Note:* In contrast to conventional PRO/II, the Electrolytes version does *not* allow two or more different names for the same component to be used at the same time in the Component Data input.

Components can be renamed for printing purposes using the PRO/II *alias* approach.

#### Example D: Assigning an alias for output reporting

LIBID 1,NACL,, HALITE

causes the alias,  $\ensuremath{\mathsf{HALITE}}$  , to be printed in the output in place of NACL, the OLI library name

| Electrolyte Thermodynamic Data<br>THERMODYNAMIC DATA                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                      | YSTEM = elecid, {SETID = setid}                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                      | 'STEM=DBSFIL, {SETID = setid}<br>FILE= drive:\path\filename.dbs                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| SETID                                                                | Required entry to identify the electrolyte model<br>to use for the thermodynamic METHOD.<br>A unique pre-defined identifier of a pregenerated<br>electrolyte model. Also may be a predefined<br>name of a version 6.6 user-added electrolyte<br>model (i.e, a model with an assigned invariant<br>name). Cannot be a user-generated name, as used<br>for version 7.0 user-added models.<br>An optional identifier assigned to the METHOD<br>set. Often convenient for referencing the set. |  |  |
| setid                                                                | Text assigned as the identifier of the METHOD set. Required when the SETID keyword is present.                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| SYSTEM=DE                                                            | <b>3SFIL</b> Required when using a DBSFIL statement.<br>This replaces the actual identifier of an electro-<br>lyte model that has a user-assigned name.                                                                                                                                                                                                                                                                                                                                    |  |  |
| DBSFIL                                                               | This statement is required when using the SYS-<br>TEM=DBSFIL entry on the METHOD statement.                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| FILE                                                                 | = Required entry that locates and identifies the file<br>that defines the electrolyte model to use.                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| drive:                                                               | Optional drive letter of the disk drive containing<br>the electrolyte file.                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| \path\                                                               | Optional path indicating the directory containing<br>the electrolyte model. If omitted, PRO/II expects<br>the model file to reside in the same directory as<br>the input file or the simulation data base.                                                                                                                                                                                                                                                                                 |  |  |
| <i>filename</i> .db                                                  | s Required. This identifies the file containing the electrolyte model.                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Each electrolyte model in PRO/II is characterized by a fixed list of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |

Each electrolyte model in PRO/II is characterized by a fixed list of components, a fixed set of chemical equilibria, and a fixed set of thermodynamic methods for K-values, enthalpy, and density. The components and equilibria considered in the 40 pre-generated elec-

trolyte models in PRO/II are summarized in Chapter E2, *Electrolyte Models*.

This section provides a summary of the THERMODYNAMIC DATA keyword input, and a set of application guidelines.

*Note:* See *Thermodynamic Framework in PRO/II* in the *PRO/II Reference Manual, Vol. 1, Chapter 3* for a summary of changes to the thermodynamic framework and the mathematical model used by PRO/II Electrolytes for the calculation of thermodynamic quantities and chemical equilibrium, respectively.

The name of each pre-generated electrolyte model is treated in the input as a keyword by the SYSTEM entry on a thermodynamic METHOD statement.a system of thermodynamic methods. Refer to Table E2-2, "Electrolyte Model Keywords and Data Files," on page E2-3 for a listing of all key words for all pre-generated electrolyte models.

#### **Example:**

METHOD SYSTEM=SW01

where SW01 represents the name of an electrolyte model.

When multiple thermodynamic methods are needed for an application, each of the selected methods should be assigned a method SET identifier.

#### Example:

METHOD SYSTEM=SW01, SET=SET1

where SET1 is the SET identifier that may be used to assign the thermodynamic METHOD set to individual unit operations and streams.

## Using User-added Electrolyte Methods

To use a user-added model that does not have a pre-assigned name, the METHOD statement in the Thermodynamic section of keyword input must use the alternative syntax that requires a DBSFIL statement. For example, the following accesses a usergenerated model named MyElec1.dbs in directory d:\MyStuff\ElecFiles\:

## THERMODYNAMIC DATA

METHOD SYSTEM=DBSFIL, SETID=MySet DBSFIL FILE= D:\MyStuff\ElecFiles\MyElec1.dbs This syntax also works for any pre-generated model installed in the \System\ directory of the PRO/II installation. For example, the mixed salt model named GENX70 resides in file M139.dbs. Assuming the installed directory is C:\SIMSCI\PROII82\SYSTEM\, the following keyword input accesses the model:

#### THERMODYNAMIC DATA

METHOD SYSTEM=DBSFIL, SETID=GENX70 DBSFIL FILE= C:\Program Files\SIMSCI\PROII82\SYS-TEM\M139.DBS

For more information, see "Assigning Names to User-Added Models" on page E2-8.

#### Vapor-Phase Fugacity Coefficients

Four options are available for calculating vapor-phase fugacities with PRO/II Electrolytes. These options, with their keywords, are:

- Ideal-Gas (IDEAL): all fugacity coefficients are assumed to be 1.0.
- Nothnagel method (NOTH): generally valid up to 20 atmospheres, but not available for some vapor-phase components.
- Nakamura method (NAKA): generally valid at higher pressures up to 200 atmospheres, but not available for some vaporphase components.
- Soave-Redlich Kwong (SRK) method: valid over a wide range of conditions and generally recommended when vapor-phase non-ideality is important. Also valid for any vapor-phase chemical species given in OLI's component databanks.

These options are specified on the METHOD statement with the PHI entry. If no vapor fugacity option is specified, the calculations default to ideal-gas.

#### **Examples:**

#### METHOD SYSTEM=GENX, PHI=SRKMETHOD SYSTEM=SW01, PHI=NOTH

*Note:* Only SYSTEM, SET, PHI, TRANSPORT, VISCOSITY, CONDUC-TIVITY, SURFACE, and DIFFUSIVITY statements (see *PRO/II Keyword Manual, Sec. 20, Thermodynamic Data*) are available for use with electrolyte thermodynamic methods. However, the PETRO transport property option cannot be used with electrolyte models, nor can the SIMSCI or API liquid-viscosity options. The KVALUE, ENTHALPY, and DENSITY methods for electrolytes are automatically set to the method declared by the SYSTEM entry and cannot be modified individually on the METHOD statement.

#### Use of ENTHALPY = ELEC for Mixed Thermodynamic Applications

The thermodynamic framework for PRO/II Electrolytes uses a different basis, or zero-point, for enthalpies from regular PRO/II. When both electrolyte and non-electrolyte thermodynamic methods are used in a flowsheet, PRO/II takes care of this basis change automatically if a stream is changed from one method to another.

However, to avoid the potentially confusing appearance of discontinuities in output values of enthalpy, it is recommended that the ENTH=ELEC option be used for all non-electrolyte thermodynamic methods in mixed electrolyte/non-electrolyte thermodynamic applications. ENTH= ELEC is PRO/II's IDEAL enthalpy method translated by a constant to give numbers consistent with the enthalpy basis for PRO/II Electrolytes.

#### **Example:**

| METHOD | SYSTEM=SALT, | DEFAULT                                   |
|--------|--------------|-------------------------------------------|
| METHOD | SYSTEM=IDEAL | , <b>ENTHALPY=</b> ELEC, <b>SET=</b> SET2 |
| METHOD | SYSTEM=SRK,  | ENTHALPY=ELEC, SET=SET3                   |

Note that ENTH=ELEC is used with both non-electrolyte thermodynamic methods, IDEAL and SRK. For these two methods, the calculated enthalpy values will be obtained using the IDEAL enthalpy method followed by a conversion to put these values on the electrolyte basis.

An example in which this method is useful is when steam is flashed off from an electrolyte unit (a stage in a multi-effect evaporator, for example) and then condensed to provide duty for a heat exchanger (the adjacent stage in the evaporator, for example). OLI's flash calculation has difficulty with adiabatic (fixed-duty) calculations for pure water in the two-phase region, with the result that the steam side of the heat exchanger might fail to solve with electrolyte thermodynamic methods. Instead, the user could specify the IDEAL thermodynamic method with ENTH=ELEC for the steam side of the exchanger to produce a converged solution with consistent enthalpies for all streams.

*Note:* Whenever multiple enthalpy methods are used in a flowsheet, the safest (and recommended) practice for resetting the enthalpy basis is to take the stream that is changing methods through the reset unit that converts to the new enthalpy method. See the discussion in the *PRO/II Keyword Manual*, Section 20.5, *Multiple Thermodynamic Sets*.

## **Application Guidelines**

## **General Information**

PRO/II Electrolytes is composed of an integrated set of programs developed by SIMSCI and OLI Systems, Inc. that allows you to model and simulate aqueous electrolyte solutions. This includes, under the PRO/II flow sheeting environment, algorithms for the simulation of single-stage and multistage steady-state processes involving aqueous electrolytes. These programs calculate both heterogeneous, multi-phase equilibria as well as homogeneous liquidphase reaction equilibria. The allowed phases at equilibrium include vapor, aqueous liquid, organic liquid, and solid phases. With respect to liquid-solid equilibria, saturation of multiple solid phases can be calculated rigorously.

PRO/II Electrolytes simulates aqueous systems by solving mathematical models that accurately represent these systems. These models are sets of nonlinear algebraic equations containing appropriate thermodynamic parameters. Two thermodynamic methods are available for electrolyte modeling, the OLI method and the NRTL (Chen) method. The Electrolyte NRTL method can be used for modeling very concentrated electrolyte solutions with very low water content (as low as 0.3 wt%) as well as solutions with mixed solvents ranging in composition from completely aqueous to almost completely non-aqueous (again, with water content as low as 0.3 wt%).

PRO/II Electrolytes is built upon a rigorous thermodynamic framework for aqueous electrolyte systems. This framework is an amalgam based upon work by Bromley (3), Meissner (4,5), Pitzer (6,7), Zemaitis (8,9), Nothnagel (10), Nakamura (11), and Tanger (12).

The PRO/II Electrolytes module incorporates electrolyte models created using standalone software from OLI Systems, Inc. The PRO/II Electrolytes module has 40 built-in electrolyte models that can be applied to a wide range of problems of industrial interest, including, but not limited to the following:

- Gas scrubbers/purification using carbonate, amine, or caustic solutions
- Sour water strippers
- Amine towers
- Benfield processes
- Acid waste stream-neutralization drums
- Scale formation prediction for wells and pipes (oilfields, geothermal fields)
- Underground injection well studies
- Solid salts manufacturing (potash, caustic, carbonates, etc.)
- Chlor-alkali plant processes.

The integration of electrolytes into PRO/II is, from the user's point of view, seamless. In many cases, a keyword input file for an electrolytes problem could be identical (apart from entering the name of the electrolyte model in the Thermodynamic Data section) to a nonelectrolyte PRO/II input file. The four most important things that PRO/II Electrolyte users must remember are:

- PRO/II Electrolytes is designed for use in aqueous electrolyte systems within the application guidelines given in Electrolyte Thermodynamic Data. PRO/II Electrolytes cannot currently be used for mixed-solvent or non-aqueous electrolyte systems, with the exception of the user-generated models created in the Electrolyte NRTL framework.
- The model chosen in the THERMODYNAMIC DATA keyword input (Chapter E2, *Electrolyte Models*) must contain all of the components appearing in any stream that is to be treated with that thermodynamic method.
- PRO/II Electrolytes activates one new unit operation: the distillation column algorithm ELDIST. See "Electrolyte Distillation Column Algorithm (ELDIST)" on page E4-5.

- A few units are not available, and some other units have reduced functionality when used with an electrolyte thermody-namic method. These differences are discussed fully in Chapter E4, *Electrolyte Effects In Simulations*.
- The Chemistry Wizard from OLI Systems, Inc. is installed with PRO/II Electrolytes. It allows users to generate their own new electrolyte models. See the discussion in Chapter E3, *Creating a User-Added Electrolyte Model*.

If these few differences are kept in mind, users familiar with standard PRO/II keyword input can quickly make effective use of the capabilities of the PRO/II Electrolytes module.

#### **Thermodynamic Data Considerations**

A first step in selecting an electrolyte model as a thermodynamic method is to determine whether the application of interest falls within the application guidelines for PRO/II Electrolytes. For example, the expected pressures, temperatures, phases, and phase compositions for the application should fall within the stated validity ranges for PRO/II Electrolytes. Next, the user needs to identify one of the PRO/II Electrolyte models that contains all of the components of interest in its component list (see Table E2-3, "Electrolyte Model Components," on page E2-9). However, for applications using electrolyte models together with non-electrolyte thermodynamic methods, the components to be treated by the non-electrolyte methods do not need to be in the model's component list if they will not enter any unit using the electrolyte model.

#### Pressure, Temperature, and Composition Validity Ranges

The suggested application range for electrolyte thermodynamic methods is summarized below.

#### **General Ranges of Applicability**

| Temperature     | 32-572°F (0-300°C)  |
|-----------------|---------------------|
| Pressure        | 0-1500 atm          |
| Dissolved gases | 0-30 mole%          |
| Ionic solutes   | 0-30 ionic strength |
|                 |                     |

#### Amine systems

Pressure 0-30 atm

#### LLE systems

Organic solutes 10 weight%

where the ionic strength (I) is defined as:

$$I = \frac{1}{2} \sum_{ions} Z_{ions}^2 m_{ions}$$
 (0-7)

and Z denotes the ionic charge and m represents the molality of the aqueous ion. Molality is defined as the moles of solute per 1000 grams of  $H_2O$  solvent.

#### Invalid Calculations for Electrolyte Models

- Non-aqueous electrolyte systems. See the *Chemistry Wizard* User Guide for newer capabilities.
- Free water decant.
- Dew water calculations.
- Dew hydrocarbon calculations.
- Entropy and heat capacity calculations.

#### Special Case STREAM DATA Input

Due to the nature of the aqueous electrolyte flash algorithm, electrolyte feed streams with little or no water require special handling during input; you must specify the phase of the stream in the Stream Data section. Note that water-free liquid feed streams are not permitted. The algorithm also occasionally has difficulty converging for vapors or liquids at conditions very near the vapor-liquid phase boundary. Here again, if the user knows the phase of the stream, it can be entered on the PROPERTY statement; this will assure convergence but should be used with caution because the feed flash will not be able to *correct* an incorrect phase designation.

1)Feeds with little or no  $H_2O$ 

Vapor feed Enter PHASE=V on PROPERTY statement

Solid feed Use SOLID card together with PROPERTY statement

Liquid feed Not allowed. H<sub>2</sub>O must be the predominant component in the liquid phase.

#### 2)Feeds near saturation

At pressures and temperatures close to vapor+ liquid saturation conditions, it is recommended to enter the appropriate PHASE (V or L) on the PROPERTY statement.

#### True Aqueous Solution Species and Reconstituted Components

The true chemical species in the aqueous solution are those aqueous species that are included in the model's ionic equilibria and VLE expressions. Mass and charge balance constraints for the aqueous phase, together with the model's aqueous ionic equilibria expressions, are used by PRO/II Electrolytes to calculate apparent concentrations of the model's neutral components in the aqueous phase automatically from the corresponding concentrations of the true solution species (ionic and neutral). This calculation is referred to as the reconstitution of model components. Concentrations and rates are reported in the output for reconstituted components and, if ION=PART or ALL is specified on the PRINT statement, they are also reported for true solution species.

#### **Example:**

Calculate the results of an isothermal flash of the feed given below at 1 bar and 25°C, where the numbers before denote moles.

Model components:

H2O, NaOH, HCl, NaCl

Feed components:

55.51 H2O + 1 NaOH + 1 HCl

Product in terms of True Chemical Species:

56.51  $H_{2O}$  + 1  $NA^{+1}$  + 1  $Cl^{-1}$  + 1.0 $E^{-7}$   $OH^{-1}$  + 1.0 $E^{-7}$   $H^{+1}$ 

Product in terms of Reconstituted Components:

56.51 H<sub>2</sub>O + 1 NaCl

## Examples

#### **Example E1-1: Solid Component Declaration**

Set up a pure HCl vapor feed and a pure NaOH solid feed at  $25^{\circ}$ C and 1 atm, together with a liquid H<sub>2</sub>O feed at vapor-liquid saturation conditions of 100°C and 1 atm.

```
COMPONENT DATA

LIBID

1, H2O/2, NAOH/3, HCL

THERMODYNAMIC DATA

METHOD

SYSTEM=GENE

STREAM DATA

PROPERTY STRM=HCLV, TEMP=25, PRES=1, &

COMP=3, 0.5, PHASE=V

PROPERTY STRM=SOLD, TEMP=25, PRES=1

SOLID STRM=SOLD, COMP=2,0.5

PROPERTY STRM=WATR, TEMP=100, PRES=1, &

COMP=1, 100, PHASE=L
```

## References

- 1. OLI Systems, Inc., 1995, *Prochem User's Manuals*, Version 12, Morris Plains, NJ.
- 2. V.B. Shah, and R.W. Bondy, 1991, "A New Approach to Solving Electrolyte Distillation Problems", a paper presented at the AIChE Annual Meeting in Los Angeles.
- 3. L. A. Bromley, 1973, "Thermodynamic Properties of Strong Electrolytes in Aqueous Solutions", *AIChE J*, 19:313-320.
- H. P. Meissner, and C. L. Kusik, 1973, "Aqueous Solutions of Two or More Strong Electrolytes - Vapor Pressures and Solubilities", *IEC Proc. Des. Dev.*, 12:205-208.
- H. P. Meissner, and N. A. Peppas, 1973, "Activity Coefficients -Aqueous Solutions of Polybasic Acids and their Salts", *AIChE J.*, 19:806-809.
- 6. K. S. Pitzer, 1979, "Theory: Ion Interaction Approach", *Activity Coefficients in Electrolyte Solutions*, 1:157-208, R. M. Pytkowicz, ed., CRC Press, Boca Raton, FL.
- K. S. Pitzer, 1980, "Thermodynamics of Aqueous Electrolytes at Various Temperatures, Pressures and Compositions", *Thermodynamics of Aqueous Systems with Industrial Applications*, 451-466, S. A. Newman, ed., ACS Symposium Series 133.
- 8. J. F. Zemaitis, Jr., 1980, "Predicting Vapor-Liquid-Solid Equilibria in Multicomponent Aqueous Solutions of Electrolytes", *Thermodynamics of Aqueous Systems with Industrial Applica-*

*tions, 227-246*, S. A. Newman, ed., ACS Symposium Series 133.

- 9. J. F. Zemaitis, Jr., D. M. Clark, M. Rafal, and N. C. Scrivner, 1986, *Handbook of Aqueous Electrolyte Thermodynamics*, AIChE Press.
- K. H. Nothnagel, D. S. Abrams, and J. M. Prausnitz, 1973, "Generalized Correlation of Fugacity Coefficients in Mixtures at Moderate Pressures", *IEC Process Des. Dev.*, 12:25-35.
- R. Nakamura, G. J. F. Breedveld, and J. M. Prausnitz, 1976, "Thermodynamic Properties of Gas Mixtures Containing Polar and Nonpolar Components", *IEC Process Des. Dev.*, 15:557-564.
- J.C. Tanger, IV, and H.C. Helgeson, 1988, "Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures: Revised Equations of State for the Standard State Partial Molal Properties of Ions and Electrolytes", Am. J. Sci, 288:19-98.

## Chapter E2 Electrolyte Models

## **Overview**

This chapter summarizes the forty pregenerated Electrolyte models included with the PRO/II Electrolyte Module. To facilitate application of these built-in models, the following tables are provided

- "Pre-generated Electrolyte Model Naming Conventions" on page E2-2 explains the data base file naming scheme.
- "Electrolyte Model Keywords and Data Files" on page E2-3 relates the electrolyte model name (used in the GUI) to comparable keywords for each pregenerated model.
- "Electrolyte Model Components" on page E2-9 exhaustively lists all the components available in each model.
- "Summary of Electrolyte Models" on page E2-12 lists all components, all ionic species, and all electrolyte equations in each model.
- "Alphabetical Component Index of Electrolyte Models" on page E2-40 shows every pregenerated model in which each component appears.

## **Pregenerated Models**

Over the years, PRO/II has undergone many changes and has used several versions of the OLI Electrolyte Calculation Engine. Different versions of the OLI engine use different formats for the data base files. For this reason, the Electrolyte Module provides three versions of each of the 40 pregenerated electrolyte models. Naming conventions were chosen to help identify the original version used to create each data base file. The naming conventions are listed in Table E2-1.

| Table E2-1: Pre-generated Electrolyte ModelNaming Conventions                                                                                                  |                                                    |                                           |                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|-----------------------------------------|
| File Names in numeric order<br>Keyword Suffix                                                                                                                  | PRO/II<br>Version                                  | OLI Engine<br>Version                     | Creation<br>Program                     |
| M01.dbs to M40.dbs<br>no keyword suffix<br>example:<br>data file M06.dbs<br>keywords: DIPA alias M06                                                           | 7.0 - 8.1                                          | 6.3 <b>-6.6</b>                           | Chemistry<br>Wizard <b>1.0</b>          |
| M41.dbs to M60.dbs<br>(user-defined models)<br>keywords M41 to M60<br>no keyword suffix and no alias<br>example: data file: M44.dbs<br>keyword: M44 (no alias) | 7.0 - 8.1                                          | 6.3 <b>-6.6</b>                           | Chemistry<br>Wizard <b>1.0</b>          |
| M61.dbs to M100.dbs<br>example: data file M66<br>keywords DIPA56 alias M66                                                                                     | prior to <b>7.0</b><br>(Obsolete in<br>PRO/II 8.0) | <b>5.6</b><br>(Obsolete in<br>PRO/II 8.0) | Electrolyte<br>Utility Package<br>(EUP) |
| M101.dbs to M140.dbs<br>example: data file M06.dbs<br>no keyword suffix<br>keywords: DIPA70 alias M106                                                         | 8.2                                                | 7.0                                       | Chemistry<br>Wizard <b>2.0</b>          |

With the naming conventions disclosed, Table E2-2 lists all the keywords for all three versions of each of the 40 pregenerated models. The table also lists the keywords for the older user-added models that required pre-assigned file names.

| Electrolyte | Electrolyte |              |           |
|-------------|-------------|--------------|-----------|
| System      | Model       | Keywords     | Data File |
| Amines      | DEA56       | DEA56, M62   | M62.DBS   |
|             | DEA66       | DEA, M02     | M02.DBS   |
|             | DEA70       | DEA70, M102  | M102.DBS  |
|             | DGA56       | DGA56, M64   | M64.DBS   |
|             | DGA66       | DGA, M04     | M04.DBS   |
|             | DGA70       | DGA70, M104  | M104.DBS  |
|             | DIPA56      | DIPA56, M66  | M66.DBS   |
|             | DIPA66      | DIPA, M06    | M06.DBS   |
|             | DIPA70      | DIPA70, M106 | M106.DBS  |
|             | MEA56       | MEA56, M61   | M61.DBS   |
|             | MEA66       | MEA, M01     | M01.DBS   |
|             | MEA70       | MEA70, M101  | M101.DBS  |
|             | MDEA56      | MDEA56, M65  | M65.DBS   |
|             | MDEA66      | MDEA, M05    | M05.DBS   |
|             | MDEA70      | MDEA70, M105 | M105.DBS  |
|             | TEA56       | TEA56, M63   | M63.DBS   |
|             | TEA66       | TEA, M03     | M03.DBS   |
|             | TEA70       | TEA70, M103  | M103.DBS  |
| Acids       | ACIF56      | ACIF56, M82  | M82.DBS   |
|             | ACID66      | ACID, M22    | M22.DBS   |
|             | ACID70      | ACID70, M122 | M122.DBS  |
|             | CL256       | CL256, M71   | M71.DBS   |
|             | CL266       | CL2, M11     | M11.DBS   |
|             | CL270       | CL270, M111  | M111.DBS  |
|             | CLSF56      | CLSF56, M81  | M81.DBS   |
|             | CLSF66      | CLSF, M21    | M21.DBS   |
|             | CLSF70      | CLSF70, M121 | M121.DBS  |
|             | HCL56       | HCL56, M67   | M67.DBS   |
|             | HCL66       | HCL, M07     | M07.DBS   |
|             | HCL70       | HCL70, M107  | M107.DBS  |

| Table E2-2: Electrolyte Model Keywords and Data Files |                      |              |           |
|-------------------------------------------------------|----------------------|--------------|-----------|
| Electrolyte<br>System                                 | Electrolyte<br>Model | Keywords     | Data File |
|                                                       | PHOS56               | PHOS56, M69  | M69.DBS   |
|                                                       | PHOS66               | PHOS, M09    | M09.DBS   |
|                                                       | PHOS70               | PHOS70, M109 | M109.DBS  |
|                                                       | SULF56               | SULF56, M68  | M68.DBS   |
|                                                       | SULF66               | SULF, M08    | M08.DBS   |
|                                                       | SULF70               | SULF70, M108 | M108.DBS  |
| Mixed Salts                                           | CANA56               | CANA56, M72  | M72.DBS   |
|                                                       | CANA66               | CANA, M12    | M12.DBS   |
|                                                       | CANA70               | CANA70, M112 | M112.DBS  |
|                                                       | CANX56               | CANX56, M90  | M90.DBS   |
|                                                       | CANX66               | CANX, M30    | M30.DBS   |
|                                                       | CANX70               | CANX70, M130 | M130.DBS  |
|                                                       | GENE56               | GENE56, M86  | M86.DBS   |
|                                                       | GENE66               | GENE, M26    | M26.DBS   |
|                                                       | GENE70               | GENE70, M126 | M126.DBS  |
|                                                       | GENX56               | GENX56, M99  | M99.DBS   |
|                                                       | GENX66               | GENX, M39    | M39.DBS   |
|                                                       | GENX70               | GENX70, M139 | M139.DBS  |
|                                                       | GEOT56               | GEOT56, M79  | M79.DBS   |
|                                                       | GEOT66               | GEOT, M19    | M19.DBS   |
|                                                       | GEOT70               | GEOT70, M119 | M119.DBS  |
|                                                       | HOTC56               | HOTC56, M85  | M85.DBS   |
|                                                       | HOTC66               | HOTC, M25    | M25.DBS   |
|                                                       | HOTC70               | HOTC70, M125 | M125.DBS  |
|                                                       | HOTX56               | HOTX56, M98  | M98.DBS   |
|                                                       | HOTX66               | HOTX, M38    | M38.DBS   |
|                                                       | HOTX70               | HOTX70, M138 | M138.DBS  |
|                                                       | OILF56               | OIL56, M80   | M80.DBS   |
|                                                       | OILF66               | OILF, M20    | M20.DBS   |
|                                                       | OILF70               | OILF70, M120 | M120.DBS  |
|                                                       | SALT56               | SALT56, M70  | M70.DBS   |
|                                                       | SALT66               | SALT, M10    | M10.DBS   |
|                                                       | SALT70               | SALT70, M110 | M110.DBS  |

| Table E2-2: Electrolyte Model Keywords and Data Files |                      |                           |           |
|-------------------------------------------------------|----------------------|---------------------------|-----------|
| Electrolyte<br>System                                 | Electrolyte<br>Model | Keywords                  | Data File |
| Sour Water                                            | SW0156               | SW0156, M74               | M74.DBS   |
|                                                       | SW0166               | SW01, M14                 | M14.DBS   |
|                                                       | SW0170               | SW0170, M114              | M114.DBS  |
|                                                       | SW1X56               | SW1X56, M92               | M92.DBS   |
|                                                       | SW1X66               | SW1X, M32                 | M32.DBS   |
|                                                       | SW1X70               | SW1X70, M132              | M132.DBS  |
|                                                       | SW0256               | SW0256, M75               | M75.DBS   |
|                                                       | SWO266               | SW02, M15                 | M15.DBS   |
|                                                       | SW0270               | SW0270, M115              | M115.DBS  |
|                                                       | SW2X56               | SW2X56, M93               | M93.DBS   |
|                                                       | SW2X66               | SW2X, M33                 | M33.DBS   |
|                                                       | SW2X70               | SW2X70, M133              | M133.DBS  |
|                                                       | SW0356               | SW0356, M76               | M76.DBS   |
|                                                       | SW0366               | SW03, M16                 | M16.DBS   |
|                                                       | SW0370               | SW0370, M116              | M116.DBS  |
|                                                       | SW3X56               | SW3X56, M94               | M94.DBS   |
|                                                       | SW3X66               | SW3X, M34                 | M34.DBS   |
|                                                       | SW3X70               | SW3X70, M134              | M134.DBS  |
|                                                       | SW0456               | SW0456, M77               | M77.DBS   |
|                                                       | SW0466               | SW04, M17                 | M17,DBS   |
|                                                       | SW0470               | SW0470, M117              | M117.DBS  |
|                                                       | SW4X56               | SW4X56, M95               | M95.DBS   |
|                                                       | SW4X66               | SW4X, M35                 | M35.DBS   |
|                                                       | SW4X70               | SW4X70, M135              | M135.DBS  |
|                                                       | SW0556               | SW0556, M78               | M78.DBS   |
|                                                       | SW0556               | SW05, M18                 | M18.DBS   |
|                                                       | SW0570               | SW0570, M118              | M118.DBS  |
| Caustic                                               | CAUS56               | CAUS56, M83               | M83.DBS   |
| Systems                                               | CAUS66               | CAUS, M23                 | M23.DBS   |
|                                                       | CAUS70               | CAUS70, M123              | M123.DBS  |
|                                                       | CAUX56               | CAUX56, M96               | M96.DBS   |
|                                                       | CAUX50<br>CAUX66     | CAUX, M36                 | M36.DBS   |
|                                                       | CAUX66<br>CAUX70     | CAUX, M36<br>CAUX70, M136 | M136.DBS  |

ELECTROLYTES

| Table E2-2: Electrolyte Model Keywords and Data Files |                      |                             |                     |
|-------------------------------------------------------|----------------------|-----------------------------|---------------------|
| Electrolyte<br>System                                 | Electrolyte<br>Model | Keywords                    | Data File           |
|                                                       | CAU256               | CAU256, M87                 | M87.DBS             |
|                                                       | CAU266               | CAU2, M27                   | M27.DBS             |
|                                                       | CAU270               | CAU270, M127                | M127.DBS            |
|                                                       | CA2X56               | CA2X56, M100                | M100.DBS            |
|                                                       | CA2X66               | CA2X, M40                   | M40.DBS             |
|                                                       | CA2X70               | CA2X70, M140                | M140.DBS            |
| Benfield                                              | BENF56               | BENF56, M84                 | M84.DBS             |
| Systems                                               | BENF66               | BENF, M24                   | M24.DBS             |
|                                                       | BENF70               | BENF70, M124                | M124.DBS            |
|                                                       | BENX56               | BENX56, M97                 | M97.DBS             |
|                                                       | BENX66               | BENX, M37                   | M37.DBS             |
|                                                       | BENX70               | BENX70, M137                | M137.DBS            |
| Scrubber                                              | SCRU56               | SCRU56, M73                 | M73.DBS             |
| Systems                                               | SCRU50<br>SCRU66     | SCRU, M13                   | M13.DBS             |
| Systems                                               | SCRU70               | SCRU70, M113                | M113.DBS            |
|                                                       | SCRU70<br>SCRX56     | SCR070, M115<br>SCRX56, M91 | M113.DBS<br>M91.DBS |
|                                                       | SCRX66               | SCRX, M31                   | M31.DBS             |
|                                                       | SCRX00<br>SCRX70     | SCRX, MI31<br>SCRX70, M131  | MI31.DBS            |
|                                                       | SCRA/U               | SCRA/0, 101151              | WI151.DB5           |
| LLE &                                                 | TWL156               | TWL156, M88                 | M88.DBS             |
| Hydrate                                               | TWL166               | TWL1, M28                   | M28.DBS             |
| Systems                                               | TWL170               | TWL170, M128                | M128.DBS            |
|                                                       | TWL256               | TWL256, M89                 | M89.DBS             |
|                                                       | TWL266               | TWL2, M29                   | M29.DBS             |
|                                                       | TWL270               | TWL270, M129                | M129.DBS            |
| User-Added                                            | M41                  | M41                         | M41.DBS             |
| OLI 6.6                                               | M42                  | M42                         | M42.DBS             |
| from                                                  | M43                  | M43                         | M43.DBS             |
| Chemistry                                             | M44                  | M44                         | M44.DBS             |
| Wizard 1.0                                            | M45                  | M45                         | M45.DBS             |
|                                                       | M46                  | M46                         | M46.DBS             |
|                                                       | M47                  | M47                         | M47.DBS             |
|                                                       | M48                  | M48                         | M48.DBS             |
|                                                       | M49                  | M49                         | M49.DBS             |
|                                                       |                      |                             |                     |

| Table E2-2: Electrolyte Model Keywords and Data Files         |                                                                                                                                                       |                                                                           |                                                                                                                       |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Electrolyte<br>System                                         | Electrolyte<br>Model                                                                                                                                  | Keywords                                                                  | Data File                                                                                                             |
|                                                               | M50<br>M51<br>M52<br>M53<br>M54<br>M55<br>M56<br>M57<br>M58<br>M59<br>M60                                                                             | M50<br>M51<br>M52<br>M53<br>M54<br>M55<br>M56<br>M57<br>M58<br>M59<br>M60 | M50.DBS<br>M51.DBS<br>M52.DBS<br>M53.DBS<br>M54.DBS<br>M55.DBS<br>M56.DBS<br>M57.DBS<br>M58.DBS<br>M59.DBS<br>M60.DBS |
| User-Added<br>from OLI 7.0<br>from<br>Chemistry<br>Wizard 2.0 | Names are assigned as users create the .DBS files.<br>Usage is :<br>METHOD SYSTEM= <b>DBSFILE</b><br>DBSFILE FILE= {Drive:\path\} <b>filename.dbs</b> |                                                                           |                                                                                                                       |

# **Choosing An Appropriate Electrolyte Model**

The electrolyte model chosen must contain all components appearing in any stream or unit using that method. To reduce CPU time and eliminate extraneous components from the printout, it is generally best to use the smallest model encompassing the flowsheet's components. Similarly, a model without solids will run faster than a model with the same components that does allow solid precipitation. Non-solids-forming models should be used only for flow sheets where the user is certain precipitation will not occur. Models with solids suppressed are designated by names ending in x; for example, CAUX is the CAUS model without solid precipitation.

While all the pregenerated models perform properly, it is recommended that users migrate to the newer "7.0" versions of the data files (data base files M101 through M140) at their earliest convenience.

BIBECTROBYTES

# **User-Added Models**

If none of the 40 pregenerated models is suitable for an application, user-added, electrolyte models should be investigated. OLI Systems, Inc., in partnership with Invensys Operations Management, provide the *OLI Chemistry Wizard version 3.1* that allows generation of user-added models that can be used in the PRO/II Electrolytes program.

- Complete documentation of the new tool set is provided in the *OLI Chemistry Wizard User Guide*.
- The basic electrolyte components in each model are listed in Table E2-3 on page E2-9. A complete list of all species in each model is available in the separate document *PRO/II-OLI* 6.6\_Components.xls, a Microsoft Excel spreadsheet.

Both documents are included on the PRO/II installation disk. During installation, they may be copied to the \Manual\OLI subdirectory of the PRO/II installation directory.

# **Assigning Names to User-Added Models**

Note that the Chemistry Wizard does not use any assigned or reserved names for the data base files it creates. This is in contrast to earlier methods that required data base files to use one of the reserved names (M41 through M60).

The naming rules are as follows:

- Names must conform to the DOS 8.3 model.
- The first character of the name should be a letter (A-Z)
- Names are NOT case sensitive; e.g., "A" and "a" alias each other.
- Names may include embedded blanks, but their use is discouraged.

Additionally, alternative keyword syntax allows electrolyte model files to reside in any directory accessible by PRO/II. In the past, files normally were required to reside in the same directory as the .INP or .PRZ file, or in the PRO/II \System\ directory. The newer DBSFIL statement allows entering the path along with the file name. As with the file name, the path may contain embedded spaces, and is not case sensitive.

To use a user-added model that does not have a pre-assigned name, the METHOD statement in the Thermodynamic section of keyword input must use the alternative syntax that requires a DBSFIL statement. For example, the following accesses a user-generated model named MyElec1.dbs in directory d:\MyStuff\ElecFiles\:

```
THERMODYNAMIC DATA
METHOD SYSTEM=DBSFIL, SETID=MySet
DBSFIL FILE= D:\MyStuff\ElecFiles\MyElec1.dbs
```

This syntax also works for any pregenerated model installed in the \System\ directory. For example, the mixed salt model named GENX70 resides in file M139.dbs. Assuming the installed directory is C:\Program Files\SIMSCI\PROII82\SYSTEM\, the following keyword input accesses the model:

```
THERMODYNAMIC DATA
METHOD SYSTEM=DBSFIL, SETID=GENX70
DBSFIL FILE= C:\Program Files\SIM-
SCI\PROII82\SYSTEM\M139.DBS
```

# **Electrolyte Model Index**

Model names (MEA, DEA, etc.) are grouped by systems of general chemical or application interest.

| Table E2-3: Electrolyte Model Components |                                                                                              |       |
|------------------------------------------|----------------------------------------------------------------------------------------------|-------|
| Model                                    | Components                                                                                   | Page  |
| Amine Syster                             | ns                                                                                           | E2-12 |
| MEA                                      | $\frac{\rm H_{2}O/CO_{2}/C_{2}H_{6}/CH_{4}/H_{2}S/N_{2}/C_{4}H_{10}/}{\rm C_{3}H_{8}/MEAH}$  | E2-12 |
| DEA                                      | $\frac{\rm H_{2}O/CO_{2}/C_{2}H_{6}/CH_{4}/H_{2}S/N_{2}/C_{4}H_{10}/}{\rm C_{3}H_{8}/DEAH}$  | E2-13 |
| TEA                                      | $\frac{\rm H_{2}O/CO_{2}/C_{2}H_{6}/CH_{4}/H_{2}S/N_{2}/C_{4}H_{10}/}{\rm C_{3}H_{8}/TEAH}$  | E2-13 |
| DGA                                      | $\frac{\rm H_{2}O/CO_{2}/C_{2}H_{6}/CH_{4}/H_{2}S/N_{2}/C_{4}H_{10}/}{\rm C_{3}H_{8}/DGAH}$  | E2-13 |
| MDEA                                     | $\frac{\rm H_{2}O/CO_{2}/C_{2}H_{6}/CH_{4}/H_{2}S/N_{2}/C_{4}H_{10}/}{\rm C_{3}H_{8}/MDEAH}$ | E2-13 |

| Table E2-3: Electrolyte Model Components |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Model                                    | Components                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Page  |
| DIPA                                     | $\frac{H_2O / CO_2 / C_2H_6 / CH_4 / H_2S / N_2 / C_4H_{10} / C_3H_8 / DIPAx (x = 1, 2, 3, 4, 5, 6, 7, CO_2 \text{ or } H_2)}{C_3H_8 / DIPAx (x = 1, 2, 3, 4, 5, 6, 7, CO_2 \text{ or } H_2)}$                                                                                                                                                                                                                                                                           | E2-13 |
| Acid System                              | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E2-13 |
| ACID                                     | H <sub>2</sub> O / CO / CO <sub>2</sub> / H <sub>2</sub> / HCN / HCOOH / N <sub>2</sub> / NH <sub>3</sub> / H <sub>3</sub> PO <sub>4</sub>                                                                                                                                                                                                                                                                                                                               | E2-13 |
| HCL                                      | H <sub>2</sub> O / HCl                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E2-14 |
| CL2                                      | H <sub>2</sub> O / HCl / Cl <sub>2</sub> / HClO / N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                         | E2-14 |
| CLSF                                     | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                  | E2-15 |
| SULF                                     | H <sub>2</sub> O / SO <sub>2</sub> / H <sub>2</sub> SO <sub>3</sub> / H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                     | E2-15 |
| PHOS                                     | H <sub>2</sub> O / H <sub>3</sub> PO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                        | E2-16 |
| Mixed Salt S                             | Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E2-17 |
| SALT                                     | H <sub>2</sub> O / NaCl / KCl                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2-17 |
| CANA,<br>CANX                            | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                   | E2-17 |
| НОТС,<br>НОТХ                            | H <sub>2</sub> O / CO <sub>2</sub> / CO / C <sub>2</sub> H <sub>6</sub> / CH <sub>4</sub> / H <sub>2</sub> S / H <sub>2</sub> / N <sub>2</sub> / C <sub>3</sub> H <sub>8</sub> / NaHCO <sub>3</sub> / Na <sub>2</sub> CO <sub>3</sub> / NaOH                                                                                                                                                                                                                             | E2-18 |
| GENE,<br>GENX                            | H <sub>2</sub> O / CO <sub>2</sub> / Cl <sub>2</sub> / HClO / HCl / N <sub>2</sub> / O <sub>2</sub> / SO <sub>2</sub> /<br>NaOH / NaCl / NaHCO <sub>3</sub> / Na <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                            | E2-19 |
| GEOT                                     | $\begin{array}{c} H_2O \ / \ CO_2 \ / \ NH_3 \ / \ H_2S \ / \ HCl \ / \ BaCl_2 \ / \ CaCl_2 \ / \\ CuCl_2 \ / \ FeIICl_2 \ / \ FeIICl_3 \ / \ KCl \ /LiCl \ / \ MgCl_2 \ / \\ MnCl_2 \ / \ NaCl \ / \ Na_2S \ / \ Na_2SO_3 \ / \ Na_2SO_4 \ / \ PbCl_2 \\ / \ SrCl_2 \ / \ ZnCl_2 \ / \ Na_4EDTA \ / \ Ca_2EDTA \ / \ B(OH)_3 \\ / \ BaCO_3 \ / \ BaSO_4 \ / \ CaCO_3 \ / \ CaSO_4 \ / \ Fe_3O_4 \ / \\ MgCO_3 \ / \ (NH_4)_2SO_4 \ / \ SrCO_3 \ / \ SrSO_4 \end{array}$ | E2-20 |
| OILF                                     | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Sour Water Systems E2-25                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |

| Table E2-3: Electrolyte Model Components |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| Model                                    | Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Page  |  |
| SW01,<br>SW1X                            | $\begin{array}{c} H_2O/CO_2/H_2S/NH_3/CH_4/C_6H_5OH/NaOH\\ /NaHCO_3/Na_2CO_3/C_2H_6/C_3H_8/N_2/HCl/\\ HCN/H_3PO_4/NaCl/NaHS/HCOOH \end{array}$                                                                                                                                                                                                                                                                                                                                                           | E2-25 |  |
| SW02,<br>SW2X                            | H <sub>2</sub> O / CO <sub>2</sub> / H <sub>2</sub> S / NH <sub>3</sub> / CH <sub>4</sub> / C <sub>6</sub> H <sub>5</sub> OH / NaOH<br>/ NaHCO <sub>3</sub> / Na <sub>2</sub> CO <sub>3</sub> / HCl / NaCl / NaHS / HCN<br>/ ACETACID                                                                                                                                                                                                                                                                    | E2-27 |  |
| SW03,<br>SW3X                            | $\begin{array}{c} H_2O \ / \ CO_2 \ / \ H_2S \ / \ NH_3 \ / \ CH_4 \ / \ C_6H_5OH \ / \ NaOH \\ / \ NaHCO_3 \ / \ Na_2CO_3 \ / \ C_2H_6 \ / \ C_3H_8 \ / \ N_2 \ / \ HCl \ / \\ HCN \ / \ C_4H_{10} \ / \ NaCl \ / \ NaHS \ / \ H_2 \ / \ O_2 \ / \ CO \end{array}$                                                                                                                                                                                                                                      | E2-28 |  |
| SW04,<br>SW4X                            | $\frac{\rm H_2O/CO_2/H_2S/NH_3/CH_4/C_6H_5OH/NaOH}{\rm /NaHCO_3/Na_2CO_3/C_2H_6/C_3H_8/N_2/C_4H_{10}}$                                                                                                                                                                                                                                                                                                                                                                                                   | E2-29 |  |
| SW05                                     | H <sub>2</sub> O / CO <sub>2</sub> / H <sub>2</sub> S / NH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                  | E2-30 |  |
| Caustic Syst                             | ems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E2-31 |  |
| CAUS,<br>CAUX                            | $\label{eq:head} \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                   | E2-31 |  |
| CAU2,<br>CA2X                            | H <sub>2</sub> O / NaOH / KOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2-32 |  |
| Benfield Sys                             | tems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E2-33 |  |
| BENF,<br>BENX                            | H <sub>2</sub> O / CO <sub>2</sub> / CO / C <sub>2</sub> H <sub>6</sub> / C <sub>2</sub> H <sub>4</sub> / CH <sub>4</sub> / H <sub>2</sub> S / H <sub>2</sub> /<br>N <sub>2</sub> / NH <sub>3</sub> / C <sub>3</sub> H <sub>8</sub> / K <sub>2</sub> CO <sub>3</sub> / KHCO <sub>3</sub> / KHS /<br>H <sub>3</sub> PO <sub>4</sub> / B(OH) <sub>3</sub> / KOH                                                                                                                                            | E2-33 |  |
| Scrubber Sy                              | stems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E2-34 |  |
| SCRU,<br>SCRX                            | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E2-34 |  |
| LLE and Hydrate Systems                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E2-36 |  |
| TWL1                                     | $\begin{array}{c} H_2O \ / \ CO_2 \ / \ H_2S \ / \ NH_3 \ / \ CH_4 \ / \ C_6H_5OH \ / \\ Toluene \ / \ NaOH \ / \ NaOH. H_2O \ / \ Na_2CO_3 \ / \\ Na_2CO_3 \cdot 10H_2O \ / \ Na_2CO_3 \cdot H_2O \ / \ Na_2CO_3 \cdot 7H_2O \ / \\ NaHCO_3 \ / \ NaCl \ / \ NaHS \ / \ HCl \ / \ CaCl_2 \ \cdot \\ CaCl_2 \cdot H_2O \ / \ CaCl_2 \cdot 2H_2O \ / \ CaCl_2 \cdot 4H_2O \ / \\ CaCl_2 \cdot 6H_2O \ / \ Ca(HCO_3)_2 \ / \ CaCO_3 \ / \ Ca(OH)_2 \ / \\ NH_4Cl \ / \ NH_4HCO_3 \ / \ NH_4HS \end{array}$ | E2-36 |  |

# ELECTROLYTES

| Table E2-3: Electrolyte Model Components |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| Model                                    | Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page  |  |
| TWL2                                     | $\begin{array}{c} H_2O \ / \ NaCl \ / \ NaHSO_4 \ / \ Na_2SO_4 \ / \\ Na_2SO_4 \cdot 10H_2O \ / \ NaOH \ / \ NaOH \cdot H_2O \ / \\ Ca(HSO_4)_2 \ / \ CaSO_4 \ / \ CaSO_4 \cdot 2H_2O \ / \ Ca(OH)_2 \ / \\ HCl \ / \ N_2 \ / \ CH_4 \ / \ Methanol \ / \ Ethanol \ / \ M-Xylene \\ / \ Benzene \ / \ Toluene \ / \ CaCl_2 \ / \ CaCl_2 \cdot H_2O \ / \\ CaCl_2 \cdot 2H_2O \ / \ CaCl_2 \cdot 4H_2O \ / \ CaCl_2 \cdot 6H_2O \ / \ HF \ / \\ H_2SO_4 \ / \ CaF_2 \ / \ NaF \end{array}$ | E2-38 |  |

# Summary of Electrolyte Models

All ionic equilibria given in the model summaries below take place in aqueous solution. The ".ppt" suffix on a chemical species name denotes a solid precipitate, and the "aq" suffix stands for a dissolved gas or an electrically neutral ion pair. The general form of a vapor-liquid equilibrium expression is Cvap = Caq, where c denotes a model component.

# **Amine Systems**

# **MEA Model**

# **Components:**

 $\rm H_{2}O$  /  $\rm CO_{2}$  /  $\rm C_{2}H_{6}$  /  $\rm CH_{4}$  /  $\rm H_{2}S$  /  $\rm N_{2}$  /  $\rm C_{3}H_{8}$  /  $\rm C_{4}H_{10}$  / MEAH

### Ions:

$$\rm OH^{-1}$$
 /  $\rm HCO_3^{-1}$  /  $\rm H^{+1}$  /  $\rm HS^{-1}$  / MEA-1 / MEAH2+1 /  $\rm CO_3^{-2}$  /  $\rm S^{-2}$  2

```
CO_{2}aq + H_{2}O = H^{+1} + HCO_{3}^{-1}
H_{2}O = H^{+1} + OH^{-1}
H_{2}Saq = H^{+1} + HS^{-1}
HCO_{3}^{-1} = H^{+1} + CO_{3}^{-2}
HS^{-1} = H^{+1} + S^{-2}
MEACO_{2}-1 + H_{2}O = MEAHaq + HCO_{3}^{-1}
```

 $MEAHaq + H_2O = MEAH2+1 + OH^{-1}$ 

# Vapor-Liquid Equilibria:

Vapor-liquid equilibrium is considered for all components.

# DEA, TEA, DGA, MDEA, and DIPA Models

Component lists for the other amine models differ from the MEA model only with respect to their amine components; that is, DEAH, TEAH, DGAH, MDEAH, or DIPAx replaces MEAH. In addition, these other amine models do not consider vapor-liquid equilibrium for their amine component. Finally, there is no MDEACO<sub>2</sub>-1 ion in the MDEA model.

# **Acid Systems**

# ACID Model

### **Components:**

 $\rm H_{2}O$  / CO / CO\_{2} / H\_{2} / HCN / HCOOH / N\_{2} / NH\_{3} / H\_{3}PO\_{4}

### Ions:

$$\begin{array}{ccccccccc} & \text{OH}^{-1} \ / \ \text{CO}_3^{-2} \ / \ \text{COOH}^{-1} \ / \ \text{H}_2\text{P}_2\text{O}_7^{-2} \ / \ \text{H}_2\text{PO}_4^{-1} \ / \ \text{H}_3\text{P}_2\text{O}_7^{-1} \ / \\ & \text{HCO}_3^{-1} \ / \\ & \text{H}^{+1} \ / \ \text{HP}_2\text{O}_7^{-3} \ / \ \text{HPO}_4^{-2} \ / \ \text{NH}_2\text{CO}_2^{-1} \ / \ \text{NH}_4^{+1} \ / \ \text{CN}^{-1} \ / \ \text{P}_2\text{O}_7^{-4} \ / \\ & \text{PO}_4^{-3} \end{array}$$

$$CO_{2}aq + H_{2}O = HCO_{3}^{-1} + H^{+1}$$

$$H_{2}O = H^{+1} + OH^{-1}$$

$$H_{2}P_{2}O_{7}^{-2} = H^{+1} + HP_{2}O_{7}^{-3}$$

$$H_{2}PO_{4}^{-1} = H^{+1} + HPO_{4}^{-2}$$

$$H_{3}P_{2}O_{7}^{-1} = H^{+1} + H_{2}P_{2}O_{7}^{-2}$$

$$HCNaq = H^{+1} + CN^{-1}$$

$$HCO_{3}^{-1} = H^{+1} + CO_{3}^{-2}$$

$$HCOOHaq = H^{+1} + COOH^{-1}$$

$$HP_{2}O_{7}^{-3} = H^{+1} + P_{2}O_{7}^{-4}$$

$$HPO_{4}^{-2} = H^{+1} + PO_{4}^{-3}$$

$$NH_{2}CO_{2}^{-1} + H_{2}O = NH_{3}aq + HCO_{3}^{-1}$$

$$NH_{3}aq + H_{2}O = NH_{4}^{+1} + OH^{-1}$$

$$P_{2}O_{7}^{-4} + H_{2}O = 2PO_{4}^{-3} + 2H^{+1}$$

Vapor-liquid equilibrium is not considered for H<sub>3</sub>PO<sub>4</sub>.

# HCL Model

### **Components:**

 $\rm H_2O$  / HCl

### Ions:

 $OH^{-1}$  /  $H^{+1}$  /  $Cl^{-1}$ 

# **Ionic Equilibria:**

 $H_2O = H^{+1} + OH^{-1}$  $HClaq = H^{+1} + Cl^{-1}$ 

# Vapor-Liquid Equilibria:

Vapor-liquid equilibrium is considered for all components.

# CL2 Model

# **Components:**

 $\rm H_{2}O$  / Cl\_2 / HClO / HCl /  $\rm N_{2}$ 

Ions:

 $\mathrm{OH}^{\text{-}1}$  /  $\mathrm{ClO}^{\text{-}1}$  /  $\mathrm{H}^{\text{+}1}$  /  $\mathrm{Cl}^{\text{-}1}$ 

# **Ionic Equilibria:**

 $Cl_{2}aq + H_{2}O = H^{+1} + Cl^{-1} + HClOaq$  $H_{2}O = H^{+1} + OH^{-1}$  $HClaq = H^{+1} + Cl^{-1}$ 

Vapor-liquid equilibrium is considered for all components.

# **CLSF** Model

# **Components:**

```
\rm H_{2}O / Cl_2 / HClO / HCl / N_2 / O_2 / SO_2 / H_2SO_3 / H_2SO_4
```

# Ions:

```
\begin{array}{c} \text{OH}^{-1} \ / \ \text{Cl}^{-1} \ / \ \text{H}^{+1} \ / \ \text{HSO}_3^{-1} \ / \ \text{HSO}_4^{-1} \ / \ \text{Cl}^{-1} \ / \ \text{S}_2^{\text{O}_5^{-2}} \ / \ \text{SO}_3^{-2} \\ \end{array}
```

# Ionic Equilibria:

```
Cl_{2}aq + H_{2}O = H^{+1} + Cl^{-1} + HClOaq
H_{2}O = H^{+1} + OH^{-1}
HClaq = H^{+1} + Cl^{-1}
HClOaq = H^{+1} + Cl^{-1}
HSO_{3}^{-1} = H^{+1} + SO_{3}^{-2}
HSO_{4}^{-1} = H^{+1} + SO_{4}^{-2}
S_{2}O_{5}^{-2} + H_{2}O = 2SO_{3}^{-2} + 2H^{+1}
SO_{2}aq + H_{2}O = HSO_{3}^{-1} + H^{+1}
```

# Vapor-Liquid Equilibria:

Vapor-liquid equilibrium is not considered for  $H_2SO_3 / H_2SO_4$ .

# SULF Model

# **Components:**

 $\rm H_2O$  /  $\rm SO_2$  /  $\rm H_2SO_3$  /  $\rm H_2SO_4$ 

# Ions:

$$\begin{array}{ccccccccc} \text{OH}^{-1} \ / \ \text{HSO}_3^{-1} \ / \ \text{HSO}_4^{-1} \ / \ \text{H}^{+1} \ / \ \text{S}_2^{\text{O}_5^{-2}} \ / \\ \text{SO}_3^{-2} \ / \ \text{SO}_4^{-2} \end{array}$$

. .

$$H_{2}O = H^{+1} + OH^{-1}$$

$$HSO_{3}^{-1} = H^{+1} + SO_{3}^{-2}$$

$$HSO_{4}^{-1} = H^{+1} + SO_{4}^{-2}$$

$$S_{2}O_{5}^{-2} + H_{2}O = 2SO_{3}^{-2} + 2H^{+1}$$

$$SO_{2}aq + H_{2}O = HSO_{3}^{-1} + H^{+1}$$

# Vapor-Liquid Equilibria:

Vapor-liquid equilibrium is considered for  $H_{20}$  /  $SO_2$ .

# **PHOS** Model

# **Components:**

H<sub>2</sub>O / H<sub>3</sub>PO<sub>4</sub> / PO<sub>4</sub>

# Ions:

Ionic Equilibria:

$$H_{2}O = H^{+1} + OH^{-1}$$

$$H_{2}P_{2}O_{7}^{-2} = H^{+1} + HP_{2}O_{7}^{-3}$$

$$H_{2}PO_{4}^{-1} = H^{+1} + HPO_{4}^{-2}$$

$$H_{3}P_{2}O_{7}^{-1} = H^{+1} + H_{2}P_{2}O_{7}^{-2}$$

$$HP_{2}O_{7}^{-3} = H^{+1} + P_{2}O_{7}^{-4}$$

$$HPO_{4}^{-2} = H^{+1} + PO_{4}^{-3}$$

$$P_{2}O_{7}^{-4} + H_{2}O = 2PO_{4}^{-3} + 2H^{+1}$$

# Vapor-Liquid Equilibria:

Vapor-liquid equilibrium is considered for  $H_2O$  only.

# **Mixed Salt Systems**

# SALT Model

# **Components:**

 $\rm H_2O$  / NaCl / KCl

# Ions:

 $OH^{-1}$  /  $H^{+1}$  /  $K^{+1}$  /  $Na^{+1}$  /  $Cl^{-1}$ 

# Precipitates and hydrates:

NaCl / KCl

# Ionic Equilibria:

```
H_2O = H^{+1} + OH^{-1}

KClppt = K^{+1} + Cl^{-1}

NaClppt = Na^{+1} + Cl^{-1}
```

# Vapor-Liquid Equilibria:

Vapor-liquid equilibrium is considered for H<sub>2</sub>O only.

# CANA Model

# **Components:**

```
H<sub>2</sub>O / HCl / MgSO<sub>4</sub> / Na<sub>2</sub>SO<sub>4</sub> / NaCl / H<sub>2</sub>SO<sub>4</sub> / CaSO<sub>4</sub> / NaOH /
CaCl<sub>2</sub> / MgCl<sub>2</sub> / Ca(OH)<sub>2</sub> / Mg(OH)<sub>2</sub>
```

# Ions:

# Precipitates and hydrates:

```
{\rm MgSO}_4 / {\rm Na}_2{\rm SO}_4 / NaCl / CaSO_4 / NaOH / CaCl_2 / MgCl_2 / Ca(OH)_2 / Mg(OH)_2
```

# Ionic Equilibria:

 $CaCl_{2}ppt = Ca^{+2} + 2Cl^{-1}$ 

$$Ca (OH)_{2}ppt = Ca^{+2} + 2OH^{-1}$$

$$CaOH^{+1} = Ca^{+2} + OH^{-1}$$

$$CaSO_{4}aq = Ca^{+2} + SO_{4}^{-2}$$

$$CaSO_{4}ppt = Ca^{+2} + SO_{4}^{-2}$$

$$H_{2}O = H^{+1} + OH^{-1}$$

$$HClaq = H^{+1} + Cl^{-1}$$

$$HSO_{4}^{-1} = H^{+1} + SO_{4}^{-2}$$

$$MgCl_{2}ppt = Mg^{+2} + 2Cl^{-1}$$

$$MgCl^{+1} = Mg^{+2} + Cl^{-1}$$

$$Mg(OH)_{2}ppt = Mg^{+2} + SO_{4}^{-2}$$

$$Na_{2}SO_{4}ppt = 2Na^{+1} + SO_{4}^{-2}$$

$$NaClppt = Na^{+1} + Cl^{-1}$$

$$NaOHppt = Na^{+1} + OH^{-1}$$

$$NaSO_{4}^{-1} = Na^{+1} + SO_{4}^{-2}$$

Vapor-liquid equilibrium is considered for H<sub>2</sub>O / HCl.

# CANX Model

Identical to CANA model except that solid precipitation equilibria are not considered.

# HOTC Model

# **Components:**

```
\rm H_{2}O / \rm CO_{2} / \rm CO / \rm C_{2}H_{6} / \rm CH_{4} / \rm H_{2}S / \rm H_{2} / \rm N_{2} / \rm C_{3}H_{8} / \rm NaHCO_{3} /
```

```
\rm Na_2CO_3 / \rm NaOH
```

# Ions:

$$\mbox{oh}^{-1}$$
 /  $\mbox{hco}_3^{-1}$  /  $\mbox{h}^{+1}$  /  $\mbox{hs}^{-1}$  /  $\mbox{Na}^{+1}$  /  $\mbox{co}_3^{-2}$  /  $\mbox{s}^{-2}$ 

# Precipitates and Hydrates:

NaHCO3 / Na2CO3 / NaOH

# Ionic Equilibria:

```
CO_{2}aq + H_{2}O = HCO_{3}^{-1} + H^{+1}
H_{2}O = H^{+1} + OH^{-1}
H_{2}Saq = H^{+1} + HS^{-1}
HCO_{3}^{-1} = H^{+1} + CO_{3}^{-2}
HS^{-1} = H^{+1} + S^{-2}
Na_{2}CO_{3}ppt = 2Na^{+1} + CO_{3}^{-2}
NaHCO_{3}ppt = Na^{+1} + HCO_{3}^{-1}
NaOHppt = Na^{+1} + OH^{-1}
```

# Vapor-Liquid Equilibria:

Vapor-liquid equilibrium is not considered for  $NaHCO_3 / Na_2CO_3 / NaOH$ .

# HOTX Model

Identical to HOTC model except that solid precipitation equilibria are not considered.

# **GENE** Model

# **Components:**

 $\rm H_{2}O$  /  $\rm CO_{2}$  /  $\rm Cl_{2}$  /  $\rm HClO$  /  $\rm HCl$  /  $\rm N_{2}$  /  $\rm O_{2}$  /  $\rm SO_{2}$  /  $\rm NaOH$  / NaCl /

 $\rm NaHCO_3$  /  $\rm Na_2CO_3$ 

### Ions:

```
OH-1 / ClO-1 / CO3-2 / HCO3-1 / H+1 / HSO3-1 / Na+1 / Cl-1 / s_2o_5^{-2} / SO3-2
```

### **Precipitates and Hydrates:**

NaOH / NaCl / NaHCO3 / Na2CO3

# **Ionic Equilibria:**

```
Cl_{2}aq + H_{2}O = H^{+1} + Cl^{-1} + HClOaq
CO_{2}aq + H_{2}O = HCO_{3}^{-1} + H^{+1}
H_{2}O = H^{+1} + OH^{-1}
HClaq = H^{+1} + Cl^{-1}
HCloaq = H^{+1} + Cl^{-1}
HCO_{3}^{-1} = H^{+1} + CO_{3}^{-2}
HSO_{3}^{-1} = H^{+1} + SO_{3}^{-2}
Na_{2}CO_{3}ppt = 2Na^{+1} + CO_{3}^{-2}
NaClppt = Na^{+1} + Cl^{-1}
NaHCO_{3}ppt = Na^{+1} + HCO_{3}^{-1}
NaOHppt = Na^{+1} + OH^{-1}
S_{2}O_{5}^{-2} + H_{2}O = 2SO_{3}^{-2} + 2H^{+1}
SO_{2}aq + H_{2}O = HSO_{3}^{-1} + H^{+1}
```

# Vapor-Liquid Equilibria:

Vapor-liquid equilibrium is not considered for NaOH / NaCl / NaHCO $_3$  / Na $_2$ CO $_3$ .

# **GENX Model**

Identical to GENE model except that solid precipitation equilibria are not considered.

# **GEOT** Model

# **Components:**

```
\rm H_{2}O / \rm CO_{2} / \rm NH_{3} / \rm H_{2}S / HCl / \rm BaCl_{2} / \rm CaCl_{2} / \rm CuCl_{2} / \rm FeIICl_{2} /
```

```
FeIIICl<sub>3</sub> / KCl / LiCl / MgCl<sub>2</sub> / MnCl<sub>2</sub> / NaCl / Na<sub>2</sub>S /
Na<sub>2</sub>SO<sub>3</sub> /
Na<sub>2</sub>SO<sub>4</sub> / PbCl<sub>2</sub> / SrCl<sub>2</sub> / ZnCl<sub>2</sub> / Na<sub>4</sub>EDTA / Ca<sub>2</sub>EDTA /
B(OH)<sub>3</sub> /
BaCO<sub>3</sub> / BaSO<sub>4</sub> / CaCO<sub>3</sub> / CaSO<sub>4</sub> / Fe<sub>3</sub>O<sub>4</sub> / MgCO<sub>3</sub> /
(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> /
SrCO<sub>3</sub> / SrSO<sub>4</sub>
```

Ions:

OH<sup>-1</sup> / NH<sub>4</sub><sup>+1</sup> / Ba<sup>+2</sup> / BaOH<sup>+1</sup> / Ca<sup>+2</sup> / CaHCO<sub>3</sub><sup>+1</sup> / CaOH<sup>+1</sup> / Cu<sup>+2</sup>/FeII<sup>+2</sup> / FeIIHCO<sub>3</sub><sup>+1</sup> / FeIIOH<sup>+1</sup> / FeIII<sup>+3</sup> / K<sup>+1</sup> / LI+1 / Mg<sup>+2</sup> / MgCl<sup>+1</sup> / MgHCO<sub>3</sub><sup>+1</sup> / Mn<sup>+2</sup> / MnHCO<sub>3</sub><sup>+1</sup> / MnOH<sup>+1</sup> / Na<sup>+1</sup> / Pb<sup>+2</sup> / Sr<sup>+2</sup> / Zn<sup>+2</sup> / ZnHCO<sub>3</sub><sup>+1</sup> / H<sup>+1</sup> / HCO<sub>3</sub><sup>-1</sup> / CO<sub>3</sub><sup>-2</sup> / NH<sub>2</sub>CO<sub>2</sub><sup>-1</sup> / HS<sup>-1</sup> / S<sup>-2</sup> / Cl<sup>-1</sup> / NaSO<sub>4</sub><sup>-1</sup> / HSO<sub>3</sub><sup>-1</sup> / SO<sub>3</sub><sup>-2</sup> / HSO<sub>4</sub><sup>-1</sup> / SO<sub>4</sub><sup>-2</sup> / EDTA<sup>-4</sup> / B (OH) <sub>3</sub>OH<sup>-1</sup>

# **Precipitates and Hydrates:**

BaCO\_3 / BaSO\_4 / CaCO\_3 / Fe\_3O\_4 / MgCO\_3 / (NH\_4)\_2SO\_4 /  $$\rm Srco_3$  /  $\rm srso_4$ 

# **Ionic Equilibria:**

 $H_{2}O = H^{+1} + OH^{-1}$   $CO_{2}aq + H_{2}O = H^{+1} + HCO_{3}^{-1}$   $NH_{3}aq + H_{2}O = NH_{4}^{+1} + OH^{-1}$   $H_{2}Saq = H^{+1} + HS^{-1}$   $CaSO_{4}aq = Ca^{+2} + SO_{4}^{-2}$ 

```
MgCO_{3}ppt = Mg^{+2} + CO_{3}^{-2}
(NH_{4})_{2}SO_{4}ppt = 2NH_{4}^{+1} + SO_{4}^{-2}
SrCO_{3}ppt = Sr^{+2} + CO_{3}^{-2}
SrSO_{4}ppt = Sr^{+2} + SO_{4}^{-2}
```

Vapor-liquid equilibrium is considered for  $H_2O / CO_2 / NH_3 / H_2S$ .

# **OILF** Model

### **Components:**

```
H<sub>2</sub>O / CO<sub>2</sub> / HCl / Na<sub>2</sub>SO<sub>4</sub> / NaHCO<sub>3</sub> / Na<sub>2</sub>CO<sub>3</sub> / MgCl<sub>2</sub> /
BaCl<sub>2</sub> /
CaCl<sub>2</sub> / NaCl / NaOH / KCl / BaSO<sub>4</sub> / CaCO<sub>3</sub> / CaSO<sub>4</sub> /
BaCO<sub>3</sub> /
Ca(OH)<sub>2</sub> / K<sub>2</sub>CO<sub>3</sub> / K<sub>2</sub>SO<sub>4</sub> / KHCO<sub>3</sub> / MgCO<sub>3</sub> / Mg(OH)<sub>2</sub> /
BaOH<sub>2</sub> /
KOH / MgSO<sub>4</sub> / H<sub>2</sub>SO<sub>4</sub>
```

# Ions:

# **Precipitates and Hydrates:**

```
Na<sub>2</sub>SO<sub>4</sub> / NaHCO<sub>3</sub> / Na<sub>2</sub>CO<sub>3</sub> / MgCl<sub>2</sub> / BaCl<sub>2</sub> / CaCl<sub>2</sub> /
NaOH /
KCl / BaSO<sub>4</sub> / CaCO<sub>3</sub> / CaSO<sub>4</sub> / BaCO<sub>3</sub> / Ca(OH)<sub>2</sub> / K<sub>2</sub>CO<sub>3</sub>
/
K<sub>2</sub>SO<sub>4</sub> / KHCO<sub>3</sub> / MgCO<sub>3</sub> / Mg(OH)<sub>2</sub> / BaOH<sub>2</sub> / KOH / MgSO<sub>4</sub>
```

```
BaCl_{2}ppt = Ba^{+2} + 2Cl^{-1}
BaCO_{3}ppt = Ba^{+2} + CO_{3}^{-2}
```

 $MgHCO_{3}^{+1} = Mg^{+2} + HCO_{3}^{-1}$   $Mg(OH)_{2}ppt = Mg^{+2} + 2OH^{-1}$   $MgSO_{4}ppt = Mg^{+2} + SO_{4}^{-2}$   $Na_{2}CO_{3}ppt = 2Na^{+1} + CO_{3}^{-2}$   $Na_{2}SO_{4}ppt = 2Na^{+1} + SO_{4}^{-2}$   $NaHCO_{3}ppt = Na^{+1} + HCO_{3}^{-1}$   $NaOHppt = Na^{+1} + OH^{-1}$   $NaSO_{4}^{-1} = Na^{+1} + SO_{4}^{-2}$ 

# Vapor-Liquid Equilibria:

Vapor-liquid equilibrium is considered for  $H_2O / CO_2 / HCl$ .

# **Sour Water Systems**

### SW01 Model

### **Components:**

 $\rm H_{2}O$  /  $\rm CO_{2}$  /  $\rm H_{2}S$  /  $\rm NH_{3}$  /  $\rm CH_{4}$  /  $\rm C_{6}H_{5}OH$  /  $\rm NaOH$  /  $\rm NaHCO_{3}$  /  $\rm Na_{2}CO_{3}$  /

 $\texttt{C}_2\texttt{H}_6$  /  $\texttt{C}_3\texttt{H}_8$  /  $\texttt{N}_2$  / <code>HCl</code> / <code>HCN</code> / <code>H\_3PO\_4</code> / <code>NaCl</code> / <code>NaHS</code> / <code>HCOOH</code>

# Ions:

# **Precipitates and Hydrates:**

 $NaHCO_3$  /  $Na_2CO_3$  / NaOH / NaCl

| 1                                                                                                           |
|-------------------------------------------------------------------------------------------------------------|
| $C_{6}H_{5}OHaq = H^{+1} + C_{6}H_{5}O^{-1}$                                                                |
| $CO_2aq + H_2O = HCO_3^{-1} + H^{+1}$                                                                       |
| $H_2O = H^{+1} + OH^{-1}$                                                                                   |
| $H_2P_2O_7^{-2} = H^{+1} + HP_2O_7^{-3}$                                                                    |
| $H_2 PO_4^{-1} = H^{+1} + HPO_4^{-2}$                                                                       |
| $H_2Saq = H^{+1} + HS^{-1}$                                                                                 |
| $H_3P_2O_7^{-1} = H^{+1} + H_2P_2O_7^{-2}$                                                                  |
| $HClaq = H^{+1} + Cl^{-1}$                                                                                  |
| $HCNaq = H^{+1} + CN^{-1}$                                                                                  |
| $HCO_3^{-1} = H^{+1} + CO_3^{-2}$                                                                           |
| $HCOOHaq = H^{+1} + COOH^{-1}$                                                                              |
| $HP_{2}O_{7}^{-3} = H^{+1} + P_{2}O_{7}^{-4}$                                                               |
| $HPO_4^{-2} = H^{+1} + PO_4^{-3}$                                                                           |
| $HS^{-1} = H^{+1} + S^{-2}$                                                                                 |
| $Na_2CO_3ppt = 2Na^{+1} + CO_3^{-2}$                                                                        |
| $NaClppt = Na^{+1} + Cl^{-1}$                                                                               |
| $NaHCO_3ppt = Na^{+1} + HCO_3^{-1}$                                                                         |
| $NaOHppt = Na^{+1} + OH^{-1}$                                                                               |
| $\mathrm{NH}_2\mathrm{CO}_2^{-1} + \mathrm{H}_2\mathrm{O} = \mathrm{NH}_3\mathrm{aq} + \mathrm{HCO}_3^{-1}$ |
| $\mathrm{NH}_{3}\mathrm{aq} + \mathrm{H}_{2}\mathrm{O} = \mathrm{NH}_{4}^{+1} + \mathrm{OH}^{-1}$           |
| $P_2O_7^{-4} + H_2O = 2PO_4^{-3} + 2H^{+1}$                                                                 |

Vapor-liquid equilibrium is not considered for  $\rm H_3PO_4$  / NaHCO\_3 / Na\_2CO\_3 / NaOH / NaCl / NaHS.

### SW1X Model

Identical to SW01 model except that solid precipitation equilibria are not considered.

### SW02 Model

### **Components:**

```
\rm H_{2}O / \rm CO_{2} / \rm H_{2}S / \rm NH_{3} / \rm CH_{4} / \rm C_{6}H_{5}OH / NaOH / NaHCO_{3} / Na_{2}CO_{3} / HCl / NaCl / NaHS / HCN / ACETACID
```

### Ions:

$$\begin{array}{ccccccc} \text{oh}^{-1} \ / \ \text{C}_6\text{H}_5\text{O}^{-1} \ / \ \text{Cl}^{-1} \ / \ \text{CN}^{-1} \ / \ \text{Co}_3^{-2} \ / \ \text{HCO}_3^{-1} \ / \ \text{H}^{+1} \ / \ \text{HS}^{-1} \ / \\ \text{Na}_2\text{CO}_3 \ / \ \text{NH}_2\text{CO}_2^{-1} \ / \ \text{NH}_4^{+1} \ / \ \text{Acetate}^{-1} \ / \ \text{S}^{-2} \end{array}$$

# Precipitates and Hydrates:

 ${\tt NaHCO}_3$  /  ${\tt NaOH}$  /  ${\tt Na}_2{\tt CO}_3$  /  ${\tt NaCl}$ 

```
C_{6}H_{5}OHaq = H^{+1} + C_{6}H_{5}O^{-1}
CO_{2}aq + H_{2}O = HCO_{3}^{-1} + H^{+1}
H_{2}O = H^{+1} + OH^{-1}
H_{2}Saq = H^{+1} + HS^{-1}
ACETACIDaq = H^{+1} + Acetate^{-1}
HClaq = H^{+1} + C1^{-1}
HCNaq = H^{+1} + C1^{-1}
HCO_{3}^{-1} = H^{+1} + CO_{3}^{-2}
HS^{-1} = H^{+1} + S^{-2}
Na_{2}CO_{3}ppt = 2Na^{+1} + CO_{3}^{-2}
```

```
NaClppt = Na<sup>+1</sup> + Cl<sup>-1</sup>
NaHCO<sub>3</sub>ppt = Na<sup>+1</sup> + HCO<sub>3</sub><sup>-1</sup>
NaOHppt = Na<sup>+1</sup> + OH<sup>-1</sup>
NH<sub>2</sub>CO<sub>2</sub><sup>-1</sup> + H<sub>2</sub>O = NH<sub>3</sub>aq + HCO<sub>3</sub><sup>-1</sup>
NH<sub>3</sub>aq + H<sub>2</sub>O = NH<sub>4</sub><sup>+1</sup> + OH<sup>-1</sup>
```

Vapor-liquid equilibrium is not considered for Acetic Acid /  $NaHCO_3 / NaOH / Na_2CO_3 / NaHS / NaCl.$ 

# SW2X Model

Identical to SW02 model except that solid precipitation equilibria are not considered.

# SW03 Model

### **Components:**

 $\rm H_{2}O$  /  $\rm CO_2$  /  $\rm H_2S$  /  $\rm NH_3$  /  $\rm CH_4$  /  $\rm C_6H_5OH$  /  $\rm NaOH$  /  $\rm NaHCO_3$  /  $\rm Na_2CO_3$  /  $\rm C_2H_6$  /  $\rm C_3H_8$  /  $\rm N_2$  / HCl / HCN /  $\rm C_4H_{10}$  / NaCl / NaHS /

 $\rm H_2$  / O\_2 / CO

# Ions:

OH-1 / Cl-1 / CN-1 / CO\_3-2 / HCO\_3-1 / H+1 / HS-1 / Na+1 / NH\_4^{+1} /

 $\rm NH_2CO_2^{-1}$  /  $\rm C_6H_5O^{-1}$  /  $\rm S^{-2}$ 

# **Precipitates and Hydrates:**

 ${\rm Na_2CO_3}$  /  ${\rm NaOH}$  /  ${\rm NaHCO_3}$  /  ${\rm NaCl}$ 

# **Ionic Equilibria:**

 $C_6H_5OHaq = H^{+1} + C_6H_5O^{-1}$  $CO_2aq + H_2O = HCO_3^{-1} + H^{+1}$  $H_2O = H^{+1} + OH^{-1}$  
$$\begin{split} & H_2 Saq = H^{+1} + HS^{-1} \\ & HClaq = H^{+1} + Cl^{-1} \\ & HCNaq = H^{+1} + CN^{-1} \\ & HCO_3^{-1} = H^{+1} + CO_3^{-2} \\ & HS^{-1} = H^{+1} + S^{-2} \\ & Na_2 CO_3 ppt = 2Na^{+1} + CO_3^{-2} \\ & NaClppt = Na^{+1} + Cl^{-1} \\ & NaHCO_3 ppt = Na^{+1} + HCO_3^{-1} \\ & NaOHppt = Na^{+1} + OH^{-1} \\ & NH_2 CO_2^{-1} + H_2 O = NH_3 aq + HCO_3^{-1} \\ & NH_3 aq + H_2 O = NH_4^{+1} + OH^{-1} \end{split}$$

# Vapor-Liquid Equilibria:

Vapor-liquid equilibrium is not considered for  $\rm Na_2CO_3$  /  $\rm NaOH$  /  $\rm NaHCO_3$  /  $\rm NaHS$  /  $\rm NaCl.$ 

# SW3X Model

Identical to SW03 model except that solid precipitation equilibria are not considered.

# SW04 Model

# **Components:**

 $\label{eq:h20} \begin{array}{c} \mbox{H}_2\mbox{O}\ /\ \mbox{CO}_2\ /\ \mbox{H}_2\mbox{S}\ /\ \mbox{N}_4\ /\ \mbox{C}_6\mbox{H}_5\mbox{OH}\ /\ \mbox{N}a\mbox{OH}\ /\ \mbox{N}a\mbox{HCO}_3\ / \\ \mbox{N}a_2\mbox{CO}_3\ /\ \mbox{C}_2\mbox{H}_6\ /\ \mbox{C}_3\mbox{H}_8\ /\ \mbox{N}_2\ /\ \mbox{C}_4\mbox{H}_{10} \end{array}$ 

# Ions:

$$\begin{array}{cccccccc} \text{oH}^{-1} \ / \ \text{CO}_3^{-2} \ / \ \text{HCO}_3^{-1} \ / \ \text{H}^{+1} \ / \ \text{HS}^{-1} \ / \ \text{Na}^{+1} \ / \ \text{NH}_2\text{CO}_2^{-1} \ / \\ \text{NH}_4^{+1} \ / \\ \text{C}_6\text{H}_5\text{O}^{-1} \ / \ \text{S}^{-2} \end{array}$$

# Precipitates and Hydrates:

NaOH / NaHCO $_3$  / Na $_2$ CO $_3$ 

# **Ionic Equilibria:**

- $\square$  C<sub>6</sub>H<sub>5</sub>OHaq = H<sup>+1</sup> + C<sub>6</sub>H<sub>5</sub>O<sup>-1</sup>
- $\square$  CO<sub>2</sub>aq + H<sub>2</sub>O = HCO<sub>3</sub><sup>-1</sup> + H<sup>+1</sup>
- $\blacksquare$  H<sub>2</sub>O = H<sup>+1</sup> + OH<sup>-1</sup>
- $\blacksquare H_2Saq = H^{+1} + HS^{-1}$
- $\blacksquare \text{ HCO}_3^{-1} = \text{H}^{+1} + \text{ CO}_3^{-2}$
- $\blacksquare \text{ HS}^{-1} = \text{H}^{+1} + \text{S}^{-2}$
- $Na_2CO_3ppt = 2Na^{+1} + CO_3^{-2}$
- $\blacksquare \text{NaHCO}_3 \text{ppt} = \text{Na}^{+1} + \text{HCO}_3^{-1}$
- NaOHppt =  $Na^{+1} + OH^{-1}$
- $\blacksquare \text{ NH}_2\text{CO}_2^{-1} + \text{H}_2\text{O} = \text{NH}_3\text{aq} + \text{HCO}_3^{-1}$
- $NH_3aq + H_2O = NH_4^{+1} + OH^{-1}$

# Vapor-Liquid Equilibria:

Vapor-liquid equilibrium is not considered for NaOH / NaHCO $_3$  / Na<sub>2</sub>CO $_3$ .

# SW4X Model

Identical to SW04 model except that solid precipitation equilibria are not considered.

# SW05 Model

# **Components:**

 $\rm H_2O$  /  $\rm CO_2$  /  $\rm H_2S$  /  $\rm NH_3$ 

Ions:

 $\text{OH}^{-1} \ / \ \text{HCO}_3^{-1} \ / \ \text{H}^{+1} \ / \ \text{HS}^{-1} \ / \ \text{NH}_2\text{CO}_2^{-1} \ / \ \text{NH}_4^{+1} \ / \ \text{CO}_3^{-2} \ / \ \text{S}^{-2}$ 

```
CO_2aq + H_2O = HCO_3^{-1} + H^{+1}
H_2O = H^{+1} + OH^{-1}
```

$$\begin{split} & H_2 Saq = H^{+1} + HS^{-1} \\ & HCO_3^{-1} = H^{+1} + CO_3^{-2} \\ & HS^{-1} = H^{+1} + S^{-2} \\ & NH_2 CO_2^{-1} + H_2 O = NH_3 aq + HCO_3^{-1} \\ & NH_3 aq + H_2 O = NH_4^{+1} + OH^{-1} \end{split}$$

# Vapor-Liquid Equilibria:

Vapor-liquid equilibrium is considered for all components.

# **Caustic Systems**

# **CAUS Model**

### **Components:**

 $\rm H_{2}O$  / Cl\_ / HClO / HCl / SO\_ / NaCl / Na\_2SO\_ / Na\_2SO\_ / NaOH / H\_2SO\_ 4

# Ions:

OH<sup>-1</sup> / ClO<sup>-1</sup> / H<sup>+1</sup> / HSO<sub>3</sub><sup>-1</sup> / HSO<sub>4</sub><sup>-1</sup> / Na<sup>+1</sup> / NaSO<sub>4</sub><sup>-1</sup> / Cl<sup>-1</sup> /  $s_{2}O_{5}^{-2}$  / SO<sub>3</sub><sup>-2</sup> / SO<sub>4</sub><sup>-2</sup>

### **Precipitates and Hydrates:**

NaCl / Na $_2$ SO $_3$  / Na $_2$ SO $_4$  / NaOH

```
Cl_{2}aq + H_{2}O = H^{+1} + Cl^{-1} + HClOaqH_{2}O = H^{+1} + OH^{-1}HClaq = H^{+1} + Cl^{-1}HClOaq = H^{+1} + ClO^{-1}HSO_{3}^{-1} = H^{+1} + SO_{3}^{-2}HSO_{4}^{-1} = H^{+1} + SO_{4}^{-2}
```

```
Na_{2}SO_{3}ppt = 2Na^{+1} + SO_{3}^{-2}
Na_{2}SO_{4}ppt = 2Na^{+1} + SO_{4}^{-2}
NaClppt = Na^{+1} + Cl^{-1}
NaOHppt = Na^{+1} + OH^{-1}
NaSO_{4}^{-1} = Na^{+1} + SO_{4}^{-2}
S_{2}O_{5}^{-2} + H_{2}O = 2SO_{3}^{-2} + 2H^{+1}
SO_{2}aq + H_{2}O = HSO_{3}^{-1} + H^{+1}
```

Vapor-liquid equilibrium is considered for  $H_2O / Cl_2 / HClO / HCl / SO_2$ .

# CAUX Model

Identical to CAUS model except that solid precipitation equilibria are not considered.

CAU2 Model

# **Components:**

H<sub>2</sub>O / NaOH / KOH

Ions:

 $OH^{-1}$  /  $K^{+1}$  /  $Na^{+1}$  /  $H^{+1}$ 

# Precipitates and Hydrates:

NaOH / КОН

# Ionic Equilibria:

```
H_2O = H^{+1} + OH^{-1}
KOHppt = K^{+1} + OH^{-1}
NaOHppt = Na^{+1} + OH^{-1}
```

# Vapor-Liquid Equilibria:

Vapor-liquid equilibrium is considered for H<sub>2</sub>O only.

# CA2X Model

Identical to CAU2 model except that solid precipitation equilibria are not considered.

# **Benfield Systems**

# **BENF** Model

# **Components:**

```
H2O / CO2 / CO / C2H6 / C2H4 / CH4 / H2S / H2 / N2 / NH3 / C3H8 / K2CO3 / KHCO3 / KHS / H3PO4 / B(OH)3 / KOH
```

# Ions:

# Precipitates and Hydrates:

 ${\rm K_2CO_3}$  /  ${\rm KHCO_3}$  / KOH

$$CO_{2}aq + H_{2}O = HCO_{3}^{-1} + H^{+1}$$

$$H_{2}O = H^{+1} + OH^{-1}$$

$$H_{2}P_{2}O_{7}^{-2} = H^{+1} + HP_{2}O_{7}^{-3}$$

$$H_{2}PO_{4}^{-1} = H^{+1} + HPO_{4}^{-2}$$

$$H_{2}Saq = H^{+1} + HS^{-1}$$

$$H_{3}P_{2}O_{7}^{-1} = H^{+1} + H_{2}P_{2}O_{7}^{-2}$$

$$HCO_{3}^{-1} = H^{+1} + CO_{3}^{-2}$$

$$P2O7-3 = H^{+1} + P_{2}O_{7}^{-4}$$

$$HPO_{4}^{-2} = H^{+1} + PO_{4}^{-3}$$

```
HS^{-1} = H^{+1} + S^{-2}
K_{2}CO_{3}ppt = 2K^{+1} + CO_{3}^{-2}
KHCO_{3}ppt = K^{+1} + HCO_{3}^{-1}
KOHppt = K^{+1} + OH^{-1}
NH_{2}CO_{2}^{-1} + H_{2}O = NH_{3}aq + HCO_{3}^{-1}
NH_{3}aq + H_{2}O = NH_{4}^{+1} + OH^{-1}
P_{2}O_{7}^{-4} + H_{2}O = 2PO_{4}^{-3} + 2H^{+1}
B(OH)_{3}aq = BO_{2}^{-1} + H_{2}O + H^{+1}
```

Vapor-liquid equilibrium is not considered for  $K_2CO_3$  / KHCO<sub>3</sub> / KHS / H<sub>3</sub>PO<sub>4</sub> / B(OH)<sub>3</sub> / KOH.

# **BENX** Model

Identical to BENF model except that solid precipitation equilibria are not considered.

# **Scrubber Systems**

### SCRU Model

### **Components:**

 $\rm H_{2}O$  /  $\rm CO_{2}$  / HCl / HCN / HCOOH /  $\rm N_{2}$  /  $\rm O_{2}$  /  $\rm SO_{2}$  / NaOH /  $\rm CaCO_{3}$  /

```
CaCl<sub>2</sub> / NaCl / Na<sub>2</sub>CO<sub>3</sub> / NaHCO<sub>3</sub> / NaCOOH / Ca(OH)<sub>2</sub>
```

### Ions:

$$\begin{array}{cccccccc} \text{OH}^{-1} \ / \ \text{CaHCO}_3^{+1} \ / \ \text{Ca}^{+2} \ / \ \text{CaOH}^{+1} \ / \ \text{Cl}^{-1} \ / \ \text{CN}^{-1} \ / \ \text{CO}_3^{-2} \ / \\ \text{COOH}^{-1} \ / \ \text{HCO}_3^{-1} \ / \ \text{H}^{+1} \ / \ \text{HSO}_3^{-1} \ / \ \text{Na}^{+1} \ / \ \text{CaCOOH}^{+1} \ / \ \text{S}_2^{\text{O}5}^{-2} \\ / \ \text{SO}_3^{-2} \end{array}$$

# **Precipitates and Hydrates:**

```
NaOH / CaCO<sub>3</sub> / CaCl<sub>2</sub> / NaCl / Na<sub>2</sub>CO<sub>3</sub> / NaHCO<sub>3</sub> / NaCOOH / Ca(OH)<sub>2</sub>
```

# Ionic Equilibria:

 $CaCl_{2}ppt = Ca^{+2} + 2Cl^{-1}$  $CaCO_3ppt = Ca^{+2} + CO_3^{-2}$  $CaCOOH^{+1} = Ca^{+2} + COOH^{-1}$  $CaHCO_{3}^{+1} = Ca^{+2} + HCO_{3}^{-1}$  $Ca(OH)_{2}ppt = Ca^{+2} + 2OH^{-1}$  $CaOH^{+1} = Ca^{+2} + OH^{-1}$  $CO_2aq + H_2O = HCO_3^{-1} + H^{+1}$  $H_{2}O = H^{+1} + OH^{-1}$  $HClag = H^{+1} + Cl^{-1}$  $HCNaq = H^{+1} + CN^{-1}$  $HCO_3^{-1} = H^{+1} + CO_3^{-2}$  $HCOOHaq = H^{+1} + COOH^{-1}$  $HSO_{3}^{-1} = H^{+1} + SO_{3}^{-2}$  $Na_2CO_3ppt = 2Na^{+1} + CO_3^{-2}$  $NaClppt = Na^{+1} + Cl^{-1}$  $NaCOOHppt = Na^{+1} + COOH^{-1}$  $NaHCO_3ppt = Na^{+1} + HCO_3^{-1}$  $NaOHppt = Na^{+1} + OH^{-1}$  $S_2O_5^{-2} + H_2O = 2SO_3^{-2} + 2H^{+1}$  $SO_2aq + H_2O = HSO_3^{-1} + H^{+1}$ 

# ELECTROLYTES

# Vapor-Liquid Equilibria:

Vapor-liquid equilibrium is considered for  $\rm H_2O\,/\,CO_2\,/\,HCl\,/\,HCN\,/$  HCOOH /  $\rm N_2\,/\,O_2\,/\,SO_2$  .

# TWL1 Model

# **Components:**

```
H<sub>2</sub>O / CO<sub>2</sub> / H<sub>2</sub>S / NH<sub>3</sub> / CH<sub>4</sub> / C<sub>6</sub>H<sub>5</sub>OH /Toluene / NaOH /
NaOH·H<sub>2</sub>O / Na<sub>2</sub>CO<sub>3</sub> / Na<sub>2</sub>CO<sub>3</sub>·10H<sub>2</sub>O / Na<sub>2</sub>CO<sub>3</sub>·H<sub>2</sub>O /
Na<sub>2</sub>CO<sub>3</sub>·7H<sub>2</sub>O / NaHCO<sub>3</sub> / NaCl /NaHS / HCl / CaCl<sub>2</sub> /
CaCl<sub>2</sub>·H<sub>2</sub>O /
CaCl<sub>2</sub>·2H<sub>2</sub>O / CaCl<sub>2</sub>·4H<sub>2</sub>O / CaCl<sub>2</sub>·6H<sub>2</sub>O /Ca(HCO<sub>3</sub>)<sub>2</sub> / CaCO<sub>3</sub>
/
Ca(OH)<sub>2</sub> / NH<sub>4</sub>Cl / NH<sub>4</sub>HCO<sub>3</sub> / NH<sub>4</sub>HS
```

# Ions:

# Precipitates and Hydrates:

```
CaCl<sub>2</sub> / CaCO<sub>3</sub> / Ca(OH)<sub>2</sub> / Na<sub>2</sub>CO<sub>3</sub> /NaCl / NaHCO<sub>3</sub> / NaOH
/ NH<sub>4</sub>Cl /
NH<sub>4</sub>HCO<sub>3</sub> / NH<sub>4</sub>HS / CaCl<sub>2</sub>·H<sub>2</sub>O / CaCl<sub>2</sub>·2H<sub>2</sub>O / CaCl<sub>2</sub>·4H<sub>2</sub>O /
CaCl<sub>2</sub>·6H<sub>2</sub>O / Na<sub>2</sub>CO<sub>3</sub>·10H<sub>2</sub>O / Na<sub>2</sub>CO<sub>3</sub>·H<sub>2</sub>O / Na<sub>2</sub>CO<sub>3</sub>·7H<sub>2</sub>O /
NaOH·H<sub>2</sub>O
```

```
C_{6}H_{5}OHaq = H^{+1} + C_{6}H_{5}O^{-1}
CaCl_{2}H_{2}O = Ca^{+2} + 2Cl^{-1} + H_{2}O
CaCl_{2}H_{2}O = Ca^{+2} + 2Cl^{-1} + 2H_{2}O
CaCl_{2}H_{2}O = Ca^{+2} + 2Cl^{-1} + 4H_{2}O
CaCl_{2}GH_{2}O = Ca^{+2} + 2Cl^{-1} + 6H_{2}O
```

 $CaCl_{2}aq = CaCl^{+1} + Cl^{-1}$  $CaCl_{2}ppt = Ca^{+2} + 2Cl^{-1}$  $CaCl^{+1} = Ca^{+2} + Cl^{-1}$  $CaCO_{3}aq = Ca^{+2} + CO_{3}^{-2}$  $CaCO_3ppt = Ca^{+2} + CO_3^{-2}$  $CaHCO_{3}^{+1} = Ca^{+2} + HCO_{3}^{-1}$  $Ca(OH)_{2}ppt = Ca^{+2} + 2OH CaOH^{+1} = Ca^{+2} + OH^{-1}$  $CO_2aq + H_2O = H^{+1} + HCO_3^{-1}$  $H_{2}O = H^{+1} + OH^{-1}$  $H_2Saq = H^{+1} + HS^{-1}$  $HClag = H^{+1} + Cl^{-1}$  $HCO_3^{-1} = H^{+1} + CO_3^{-2}$  $HS^{-1} = H^{+1} + S^{-2}$  $Na_2CO_3 \cdot 10H_2O = 2Na^{+1} + CO_3^{-2} + 10H_2O$  $Na_2CO_3 H_2O = 2Na^{+1} + CO_3^{-2} + H_2O$  $Na_2CO_3 \cdot 7H_2O = 2Na^{+1} + CO_3^{-2} + 7H_2O$  $Na_2CO_3ppt = 2Na^{+1} + CO_3^{-2}$  $NaClppt = Na^{+1} + Cl^{-1}$  $NaCO_{3}^{-1} = Na^{+1} + CO_{3}^{-2}$  $NaHCO_3aq = Na^{+1} + HCO_3^{-1}$  $NaHCO_3ppt = Na^{+1} + HCO_3^{-1}$  $NaOH H_2O = Na^{+1} + OH^{-1} + 1H_2O$ 

```
NaOHppt = Na<sup>+1</sup> + OH<sup>-1</sup>

NH<sub>2</sub>CO<sub>2</sub><sup>-1</sup> + H<sub>2</sub>O = NH<sub>3</sub>aq + HCO<sub>3</sub><sup>-1</sup>

NH<sub>3</sub>aq + H<sub>2</sub>O = NH<sub>4</sub><sup>+1</sup> + OH<sup>-1</sup>

NH<sub>4</sub>Clppt = NH<sub>4</sub><sup>+1</sup> + Cl<sup>-1</sup>

NH<sub>4</sub>HCO<sub>3</sub>ppt = NH<sub>4</sub><sup>+1</sup> + HCO<sub>3</sub><sup>-1</sup>

NH<sub>4</sub>HSppt = NH<sub>4</sub><sup>+1</sup> + HS<sup>-1</sup>
```

# Vapor-Liquid and Liquid-Liquid Equilibria:

Vapor-liquid equilibrium is considered for  $\rm H_2O$  /  $\rm C_6H_5OH$  /  $\rm CH_4$  /  $\rm CO_2$  /  $\rm H_2S$  /  $\rm HCl$  /  $\rm NH_3$  / Toluene.

# TWL2 Model

# **Components:**

```
\label{eq:h20} \begin{array}{c} \mbox{NaCl / NaHSO4 / Na2SO4 / Na2SO4 \cdot 10H2O / NaOH / \\ \mbox{NaOH} \cdot \mbox{H2O} \ / \ \mbox{Ca} \ (HSO4)_2 \ / \ \mbox{CaSO4} \ / \ \mbox{CaSO4} \cdot \mbox{2H2O} \ / \ \mbox{Ca} \ (OH)_2 \ / \\ \mbox{HCl / N2 / CH4 / Methanol / Ethanol / M-Xylene / Benzene / \\ \mbox{Toluene / CaCl2 / CaCl2} \cdot \mbox{H2O / CaCl2} \cdot \mbox{2H2O / CaCl2} \cdot \mbox{4H2O / CaCl
```

# Ions:

```
\begin{array}{c} \texttt{OH}^{-1} \ / \ \texttt{Cl}^{-1} \ / \ \texttt{HF}_2^{-1} \ / \ \texttt{HSO}_4^{-1} \ / \ \texttt{NaSO}_4^{-1} \ / \ \texttt{F}^{-1} \ / \ \texttt{SO}_4^{-2} \ / \ \texttt{H}^{+1} \ / \\ \texttt{CaCl}^{+1} \ / \ \texttt{CaF}^{+1} \ / \ \texttt{CaOH}^{+1} \ / \ \texttt{Na}^{+1} \ / \ \texttt{Ca}^{+2} \end{array}
```

# **Precipitates and Hydrates:**

```
CaCl<sub>2</sub> / CaF<sub>2</sub> / Ca(OH)<sub>2</sub> / CaSO<sub>4</sub> / Na<sub>2</sub>SO<sub>4</sub> / NaCl / NaF /
NaHSO<sub>4</sub>/
NaOH / CaCl<sub>2</sub>·H<sub>2</sub>O / CaCl<sub>2</sub>·2H<sub>2</sub>O / CaCl<sub>2</sub>·4H<sub>2</sub>O / CaCl<sub>2</sub>·6H<sub>2</sub>O
/
CaSO<sub>4</sub>·2H<sub>2</sub>O / Na<sub>2</sub>SO<sub>4</sub>·10H<sub>2</sub>O / NaOH·H<sub>2</sub>O
```

# ELECTROLYTES

# **Ionic Equilibria:**

 $CaCl_{2} H_{2}O = Ca^{+2} + 2Cl^{-1} + H_{2}O$  $CaCl_{2} \cdot 2H_{2}O = Ca^{+2} + 2Cl^{-1} + 2H_{2}O$  $CaCl_{2} \cdot 4H_{2}O = Ca^{+2} + 2Cl^{-1} + 4H_{2}O$  $CaCl_{2} \cdot 6H_{2}O = Ca^{+2} + 2Cl^{-1} + 6H_{2}O$  $CaCl_{2}aq = CaCl^{+1} + Cl^{-1}$  $CaCl_{2}ppt = Ca^{+2} + 2Cl^{-1}$  $CaCl^{+1} = Ca^{+2} + Cl^{-1}$  $CaF_{2}ppt = Ca^{+2} + 2F^{-1}$  $CaF^{+1} = Ca^{+2} + F^{-1}$  $Ca(OH)_{2}ppt = Ca^{+2} + 2OH^{-1}$  $CaOH^{+1} = Ca^{+2} + OH^{-1}$  $CaSO_4 \cdot 2H_2O = Ca^{+2} + SO_4^{-2} + 2H_2O$  $CaSO_4aq = Ca^{+2} + SO_4^{-2}$  $CaSO_4ppt = Ca^{+2} + SO_4^{-2}$  $H_{2}O = H + + OH^{-1}$  $HClag = H + + Cl^{-1}$  $HF_2^{-1} = F^{-1} + HFaq$  $HFag = H^{+1} + F^{-1}$  $HSO_4^{-1} = H^{+1} + SO_4^{-2}$  $Na_2SO_4 \cdot 10H_2O = 2Na^{+1} + SO_4^{-2} + 10H_2O$  $Na_2SO_4ppt = 2Na^{+1} + SO_4^{-2}$  $NaClppt = Na^{+1} + Cl^{-1}$  $NaFaq = Na^{+1} + F^{-1}$ 

NaFppt = Na<sup>+1</sup> + F<sup>-1</sup> NaHSO<sub>4</sub>ppt = Na<sup>+1</sup> + HSO<sub>4</sub><sup>-1</sup> NaOH·H<sub>2</sub>Oppt = Na<sup>+1</sup> + OH<sup>-1</sup> + H<sub>2</sub>O NaOHppt = Na<sup>+1</sup> + OH<sup>-1</sup> NaSO<sub>4</sub><sup>-1</sup> = Na<sup>+1</sup> + SO<sub>4</sub><sup>-2</sup>

# Vapor-Liquid and Liquid-Liquid Equilibria:

Vapor-liquid equilibrium is considered for  $H_2O$  / Benzene /  $CH_4$  / Ethanol / HCl / HF / Methanol / M-Xylene /  $N_2$  / Toluene.

# Alphabetical Component Index of Electrolyte Models

The Electrolyte models that contain a given component (or ionic species) are listed directly underneath the component names in this index. The phases allowed for the components are given in parentheses following the component names, where:

AQ = aqueous phase (ion, ion pair, or dissolved neutral molecule)

CI = completely ionized aqueous electrolyte

V= vapor phase

S = solid phase

HC = hydrocarbon or non-aqueous liquid phase.

For example, it can be deduced from the index that aqueous calcium ion,  $Ca^{+2}(AQ)$ , hydroxide ion,  $OH^{-1}(AQ)$ , calcium mono-hydroxide ion pair,  $CaOH^{+1}(AQ)$ , and solid calcium hydroxide,  $Ca(OH)_2(S)$ are included in the CANA model. The CANX model has the same components as CANA; however, solid phases of the components are not allowed. Consequently,  $Ca(OH)_2$  in the CANX model is treated as an aqueous electrolyte that is completely ionized (CI).

| Α                          | TEA2                                               |
|----------------------------|----------------------------------------------------|
| Acetacid (AQ)              | C <sub>3</sub> H <sub>8</sub> (V,AQ)               |
| SW023                      | BENF6                                              |
| SW2X3                      | BENX6                                              |
| Acetate <sup>-1</sup> (AQ) | DEA7                                               |
| SW021                      | DGA7                                               |
| SW2X1                      | DIPA7                                              |
| D                          | HOTC7<br>HOTX7                                     |
| В                          | MDEA7                                              |
| Ba <sup>+2</sup> (AQ)      | MEA7                                               |
| GEOT1                      | SW017                                              |
| OILF1                      | SW037                                              |
| BaCl <sub>2</sub> (CI)     | SW047                                              |
| GEOT1                      | SW1X7                                              |
| BaCl <sub>2</sub> (S)      | SW3X7                                              |
| OILF1                      | SW4X7                                              |
| $BaCO_3$ (S)               | TEA7                                               |
| GEOT1                      | $C_{4}H_{10}$ (V,AQ)                               |
| OILF1                      | DEA6                                               |
| BaOH <sup>+1</sup> (AQ)    | DGA6                                               |
| GEOT1                      | DIPA6                                              |
| OILF1                      | MDEA6<br>MEA6                                      |
| Ba(OH) <sub>2</sub> (S)    | SW036                                              |
| OILF1                      | SW046                                              |
| $BaSO_4$ (S)               | SW3X6                                              |
| GEOT1                      | SW4X6                                              |
| OILF1                      | TEA6                                               |
| Benzene (V,AQ,HC)          | C <sub>6</sub> H <sub>5</sub> O <sup>-1</sup> (AQ) |
| TWL2                       | SW011                                              |
| $BO_2^{-1}$ (AQ)           | SW021                                              |
| BENF1                      | SW031                                              |
| BENX1                      | SW041                                              |
| B(OH) <sub>3</sub> (AQ)    | SW1X1                                              |
| BENF1                      | SW2X1<br>SW3X1                                     |
| BENX1<br>GEOT1             | SW4X1                                              |
| $B(OH)_3OH^{-1}(AQ)$       | TWL1                                               |
| GEOT1                      | C <sub>6</sub> H <sub>5</sub> OH (V,AQ)            |
| GEOTT                      | SW011                                              |
| C                          | SW021                                              |
| $C_2H_4$ (V,AQ)            | SW031                                              |
| BENF2                      | SW041                                              |
| BENX2C2H6(V,AQ)            | SW1X1                                              |
| BENF2                      | SW2X1                                              |
| BENX2                      | SW3X1<br>SW4X1                                     |
| DEA2                       | $C_6H_5OH$ (V,AQ,HC)                               |
| DGA2<br>DIPA2              | TWL1                                               |
| HOTC2                      | Ca <sup>+2</sup> (AQ)                              |
| HOTX2                      | CANA1                                              |
| MDEA2                      | CANA1<br>CANX1                                     |
| MEA2                       | GEOT1                                              |
| SW012                      | OILF1                                              |
| SW032                      | SCRU1                                              |
| SW042                      | SCRX1                                              |
| SW1X2                      | TWL2                                               |
| SW3X2<br>SW4X2             | Ca2EDTA (AQ)                                       |
| 5W4A2                      | GEOT1                                              |

| CaCl <sup>+1</sup> (AQ)                  | Ca(OH) <sub>2</sub> (CI)  |
|------------------------------------------|---------------------------|
|                                          |                           |
| TWL1                                     | CANX1                     |
| TWL2                                     | SCRX1                     |
| $CaCl_2$ (CI)                            | $Ca(OH)_2$ (S)            |
| CÂNX1                                    | CANA1                     |
| -                                        | -                         |
| GEOT1                                    | OILF1                     |
| SCRX1                                    | SCRU1                     |
| $CaCl_2$ (S)                             | TWL1                      |
| CÂNÁ1                                    | TWL2                      |
| OILF1                                    | $CaSO_4$ (AQ)             |
| SCRU1                                    | CANX1                     |
|                                          | -                         |
| TWL1                                     | GEOT1                     |
| TWL2                                     | CaSO <sub>4</sub> (S,AQ)  |
| $CaCl_2 \cdot H_2O(S)$                   | CANA1                     |
| TŴLĨ                                     | OILF1                     |
| TWL2                                     | TWL2                      |
|                                          |                           |
| $CaCl_2 \cdot 2H_2O(S)$                  | $CaSO_4 \cdot 2H_2O(S)$   |
| TWL1                                     | TWL2                      |
| TWL2                                     | CH <sub>4</sub> (V,AQ)    |
| CaCl <sub>2</sub> ·4H <sub>2</sub> O (S) | BENF1                     |
|                                          |                           |
| TWL1                                     | BENX1                     |
| TWL2                                     | DEA1                      |
| $CaCl_2 \cdot 6H_2O(S)$                  | DGA1                      |
| TŴL1                                     | DIPA1                     |
| TWL2                                     | HOTC1                     |
|                                          | HOTX1                     |
| CaCO <sub>3</sub> (CI)                   | MDEA1                     |
| SCRX1                                    |                           |
| CaCO <sub>3</sub> (S)                    | MEA1                      |
| GEOT1                                    | SW011                     |
|                                          | SW021                     |
| OILF1                                    | SW031                     |
| SCRU1                                    | SW041                     |
| TWL1                                     | SW1X1                     |
| CaCOOH <sup>+1</sup> (AQ)                | SW2X1                     |
| SCRU1                                    |                           |
| SCRX1                                    | SW3X1                     |
|                                          | SW4X1                     |
| CaF <sup>+1</sup> (AQ)                   | TEA1                      |
| TWL2                                     | CH <sub>4</sub> (V,AQ,HC) |
| $CaF_2(S)$                               | TWL1                      |
| TWL2                                     | TWL2                      |
|                                          | ==                        |
| CaHCO <sub>3</sub> <sup>+1</sup> (AQ)    | Cl <sup>-1</sup> (AQ)     |
| GEOT1                                    | CANA1                     |
| OILF1                                    | CANX1                     |
| SCRU1                                    | CAUS1                     |
| SCRX1                                    | CAUX1                     |
| TWL1                                     |                           |
|                                          | Cl21                      |
| $Ca(HCO_3)_2(CI)$                        | CLSF1                     |
| TWL1                                     | GENE1                     |
| CaHSO₄ (CI)                              | GENX1                     |
| TWL2                                     | GEOT1                     |
|                                          | HCL1                      |
| CaOH <sup>+1</sup> (AQ)                  | OILF1                     |
| CANA1                                    | SALT1                     |
| CANX1                                    | -                         |
| GEOT1                                    | SCRU1                     |
| OILF1                                    | SCRX1                     |
| SCRU1                                    | SW011                     |
| SCRX1                                    | SW021                     |
|                                          | SW031                     |
| TWL1                                     | SW1X1                     |
| TWL2                                     | OTTINI                    |

| HCL3                                | SW014                 | TWL2                                  |   |
|-------------------------------------|-----------------------|---------------------------------------|---|
| OILF3                               | SW1X4                 | К                                     |   |
| SCRU3<br>SCRX3                      | $HF_{2}^{-1}$ (AQ)    |                                       |   |
| SW013                               | TWL2<br>HF (V,AQ,HC)  | K <sup>+1</sup> (AQ)<br>BENF4         |   |
| SW023                               | TWL2                  | BENX4                                 |   |
| SW033                               | $HP_2O_7^{-3}$ (AQ)   | CA2X4                                 |   |
| SW1X3                               |                       | CAU24                                 |   |
| SW2X3                               | BENF4                 | GEOT4                                 |   |
| SW3X3                               | BENX4                 | OILF4                                 |   |
| TWL1                                | PHOS4                 | SALT4                                 |   |
|                                     | SW014                 | $K_2CO_3$ (CI)                        | I |
| HCIO (V,AQ)<br>CAUS3                | SW1X4                 | BENX4                                 |   |
| CAUX3                               | $HPO_4^{-2}$ (AQ)     | $K_2CO_3$ (S)                         |   |
| CL23                                | ACID4                 | BENF4                                 | I |
| CLSF3                               | BENF4                 | OILF4                                 |   |
| GENE3                               | BENX4                 | $K_2SO_4$ (S)                         |   |
| GENX3                               | PHOS4<br>SW014        | OILF4                                 | I |
| HCN (V,AQ)                          | SW1X4                 | KCI (CI)                              |   |
| ACID4                               | HS <sup>-1</sup> (AQ) | GEOT4                                 |   |
| SCRU4<br>SCRX4                      | BENF4                 | KCI (S)<br>OILF4                      |   |
| SW014                               | BENX4                 | SALT4                                 |   |
| SW014<br>SW024                      | DEA4                  | KHCO <sub>3</sub> (CI)                |   |
| SW034                               | DGA4                  | BENX4                                 |   |
| SW1X4                               | DIPA4                 | KHCO <sub>3</sub> (S)                 |   |
| SW2X4                               | GEOT4                 | BENF4                                 |   |
| SW3X4                               | HOTC4                 | OILF4                                 |   |
| HCO <sub>3</sub> <sup>-1</sup> (AQ) | HOTX4                 | KHS (CI)                              |   |
| ACID4                               | MDEA4                 | BENF4                                 |   |
| BENF4                               | MEA4<br>SW014         | BENX4                                 |   |
| BENX4                               | SW014<br>SW024        | KOH (CI)                              | ļ |
| DEA4                                | SW034                 | BENX4                                 |   |
| DGA4                                | SW044                 | CA2X4                                 |   |
| DIPA4<br>GENE4                      | SW054                 | KOH (S)                               |   |
| GENX4                               | SW1X4                 | BENF4<br>CAU24                        |   |
| GEOT4                               | SW2X4                 | OILF4                                 |   |
| HOTC4                               | SW3X4                 |                                       |   |
| HOTX4                               | SW4X4                 | L                                     |   |
| MDEA4                               |                       | Li <sup>+1</sup> (AQ)                 |   |
| MEA4                                | $HSO_3^{-1}(AQ)$      | GEOT4                                 |   |
| OILF4                               | CAUS4<br>CAUX4        | LiCl (Cl)                             |   |
| SCRU4<br>SCRX4                      | CLSF4                 | GEÓT4                                 |   |
| SW014                               | GENE4                 | М                                     |   |
| SW014<br>SW024                      | GENX4                 | Μ                                     |   |
| SW034                               | GEOT4                 | MDEAH (AQ)                            |   |
| SW044                               | SCRU4                 | MDEA4                                 |   |
| SW054                               | SCRX4                 | $MDEAH_2^{+1}$ (AQ)                   |   |
| SW1X4                               | SULF4                 | MDEA4                                 |   |
| SW2X4                               | $HSO_4^{-1}$ (AQ)     | MEACO <sub>2</sub> <sup>-1</sup> (AQ) |   |
| SW3X                                | CANA4                 | MEA4                                  |   |
| SW4X4                               | CANX4                 |                                       |   |
| TEA4<br>TWL1                        | CAUS4<br>CAUX4        | MEAH (V,AQ)                           |   |
| HCOOH (V,AQ)                        | CAUX4<br>CLSF4        |                                       |   |
| ACID4                               | GEOT4                 | $MEAH_{2}^{+1}(AQ)$                   |   |
| SCRU4                               | OILF4                 | MEA4<br>Methanol (V,AQ,HC)            |   |
| SCRX4                               | SULF4                 |                                       |   |
|                                     |                       |                                       |   |

ELECTROLYTES

TWL2  $Mg^{+2}$  (AQ) CANA4 CANX4 GEOT4 OILF4 MgCl<sup>+1</sup> (AQ) CANA4

CANX4 GEOT4 OILF4 MgCl<sub>2</sub> (CI) CANX4 GEOT4  $MgCl_2(S)$ CANA4 OILF4  $MgCO_3(S)$ GEOT5 OILF5  $MgHCO_3^{+1}$  (AQ) GEOT5 OILF5  $Mg(OH)_2(CI)$ CANX5  $Mg(OH)_2(S)$ CANA5 OILF5 MgSO<sub>4</sub> (CI) CANX5  $MgSO_4$  (S) CANA5 OILF5  $Mn^{+2}$  (AQ) GEOT5  $MnCl_2$  (CI) GEOT5  $MnHCO_3^{+1}$  (AQ) GEOT5 MnOH<sup>+1</sup> (AQ) GEOT5 M-Xylene (V,AQ,HC) TWL2

Ν

 $N_2$  (V,AQ) ACID5 BENF5 BENX5 CL25 CLSF5 DEA5 DGA5 DIPA5 GENE5 GENX5 HOTC5 HOTX5

| T-         |
|------------|
|            |
|            |
| Ε.         |
|            |
|            |
|            |
| $\bigcirc$ |
| $\sim$     |
|            |
|            |
| 5          |
| $\bigcirc$ |
| $\sim$     |
|            |
| Ľ          |
|            |
| 63         |

| MDEA5                     | Na <sub>2</sub> CO <sub>3</sub> .10H <sub>2</sub> O (S) | GENE5                                | SW016                 |
|---------------------------|---------------------------------------------------------|--------------------------------------|-----------------------|
| MEA5                      | TWL1                                                    | HOTC5                                | SW026                 |
|                           |                                                         |                                      |                       |
| SCRU5                     | Na <sub>2</sub> S (CI)                                  | OILF5                                | SW036                 |
| SCRX5                     | GEOT5                                                   | SCRU5                                | SW046                 |
| SW015                     | $Na_2SO_3$ (CI)                                         | SW015                                | SW056                 |
| SW035                     | CAUX5                                                   | SW025                                | SW1X6                 |
| SW045                     |                                                         | SW035                                | SW2X6                 |
| SW1X5                     | GEOT5                                                   | SW045                                | SW3X6                 |
| SW3X5                     | $Na_2SO_3(S)$                                           | TWL1                                 | SW4X6                 |
| SW4X5                     | CAUS5                                                   | NaHS (CI)                            | TWL1                  |
|                           | $Na_2SO_4$ (CI)                                         |                                      |                       |
| TEA5                      |                                                         | SW015                                | $NH_3$ (V,AQ)         |
| N <sub>2</sub> (V,AQ,HC)  | CANX5                                                   | SW025                                | ACID6                 |
| TWL2                      | CAUX5                                                   | SW035                                | BENF6                 |
| Na <sup>+1</sup> (AQ)     | GEOT5                                                   | SW1X5                                | BENX6                 |
| CA2X5                     | $Na_2SO_4$ (S)                                          | SW2X5                                | GEOT6                 |
|                           | CANA5                                                   | SW3X5                                | SW016                 |
| CANA5                     | CAUS5                                                   | TWL1                                 | SW026                 |
| CANX5                     |                                                         | NaHSO <sub>4</sub> (S)               |                       |
| CAU25                     | OILF5                                                   |                                      | SW036                 |
| CAUS5                     | TWL2                                                    | TWL2                                 | SW046                 |
| CAUX5                     | $Na_2SO_4.10H_2O$                                       | NaOH (CI)                            | SW056                 |
| GENE5                     | TWL2                                                    | CA2X5                                | SW1X6                 |
| GENX5                     | Na₄EDTA (AQ)                                            | CANX5                                | SW2X6                 |
| GEOT5                     |                                                         | CAUX5                                | SW3X6                 |
|                           | GEOT5                                                   | GENX5                                | SW4X6                 |
| HOTC5                     | NaCI (CI)                                               | HOTX5                                |                       |
| HOTX5                     | CANX5                                                   |                                      | $NH_3$ (V,AQ,HC)      |
| OILF5                     | CAUX5                                                   | SCRX5                                | TWL1                  |
| SALT5                     | GENX5                                                   | SW1X6                                | $NH_4^{+1}$ (AQ)      |
| SCRU5                     | GEOT5                                                   | SW2X6                                | ACID6                 |
| SCRX5                     | OILF5                                                   | SW3X6                                | BENF6                 |
| SW015                     |                                                         | SW4X6                                | BENX6                 |
| SW025                     | SCRX5                                                   | NaOH (S)                             |                       |
| SW035                     | SW1X5                                                   | CANA6                                | GEOT6                 |
|                           | SW2X5                                                   | CAU26                                | SW016                 |
| SW045                     | SW3X5                                                   | CAUS6                                | SW026                 |
| SW1X5                     | NaCI (S)                                                | GENE6                                | SW036                 |
| SW2X5                     | CANA5                                                   |                                      | SW046                 |
| SW3X5                     | CAUS5                                                   | HOTC6                                | SW056                 |
| SW4X5                     | GENE5                                                   | OILF6                                | SW1X6                 |
| TWL2                      |                                                         | SCRU6                                | SW2X6                 |
| $Na_2CO_3$ (CI)           | SALT5                                                   | SW016                                | SW3X6                 |
| GENX5                     | SCRU5                                                   | SW026                                | SW4X6                 |
| HOTX5                     | SW015                                                   | SW036                                | TWL1                  |
|                           | SW025                                                   | SW046                                |                       |
| SCRX5                     | SW035                                                   | TWL1                                 | $NH_4CI(S)$           |
| SW1X5                     | TWL1                                                    | TWL2                                 | TWL1                  |
| SW2X5                     | TWL2                                                    | NaOH·H <sub>2</sub> O (S)            | $NH_4HCO_3$ (S)       |
| SW3X5                     | NaCOOH (CI)                                             |                                      | TWL1                  |
| SW4X5                     | SCRX5                                                   | TWL1                                 | $NH_4HS(S)$           |
| $Na_2CO_3$ (S)            | NaCOOH (S)                                              | TWL2                                 |                       |
| GENE5                     | SCRU5                                                   | NaSO <sub>4</sub> <sup>-1</sup> (AQ) | TWL1                  |
| HOTC5                     |                                                         | CANA6                                | $(NH_4)_2SO_4$ (S)    |
| OILF5                     | NaF (S)                                                 | CANX6                                | GEOT6                 |
|                           | TWL2                                                    | CAUS6                                |                       |
| SCRU5                     | NaHCO <sub>3</sub> (CI)                                 | CAUX6                                | 0                     |
| SW015                     | GENX5                                                   |                                      |                       |
| SW025                     | HOTX5                                                   | GEOT6                                | O <sub>2</sub> (V,AQ) |
| SW035                     | SCRX5                                                   | OILF6                                | CLSF6                 |
| SW045                     | SW1X5                                                   | TWL2                                 | GENE6                 |
| TWL1                      | SW2X5                                                   | $NH_2CO_2^{-1}(AQ)$                  | GENX6                 |
| $Na_2CO_3 \cdot H_2O(S)$  |                                                         | ĂCID6                                | SCRU6                 |
| TWL1                      | SW3X5                                                   | BENF6                                | SCRX6                 |
|                           | SW4X5                                                   | BENX6                                | SW036                 |
| $Na_2CO_3 \cdot 7H_2O(S)$ | $NaHCO_3$ (S)                                           | GEOT6                                | SW3X6                 |
| TWL1                      |                                                         | GLOTO                                | 00000                 |
|                           |                                                         |                                      |                       |

| $OH^{-1} (AQ)$<br>(all models)6<br>P<br>$P_2O_7^{-4} (AQ)$<br>ACID6<br>BENF6<br>BENX6<br>PHOS6<br>SW016<br>SW1X6<br>$Pb^{+2} (AQ)$<br>GEOT6<br>$PbCl^2 (CI)$<br>GEOT6<br>$PO_4^{-3} (AQ)$<br>ACID6<br>BENF7<br>BENX7<br>DEA7<br>DGA7<br>DIPA7<br>GEOT7<br>HOTC7<br>HOTC7<br>HOTC7<br>HOTC7<br>HOTC7<br>HOTC7<br>SW017<br>SW027<br>SW037<br>SW047<br>SW057 | $\begin{array}{c} \text{GENE7}\\ \text{GENX7}\\ \text{SCRU7}\\ \text{SCRV7}\\ \text{SULF7}\\ \text{SO}_{3}^{-2}\left(\text{AQ}\right)\\ \text{CAUS7}\\ \text{CAUS7}\\ \text{CLSF7}\\ \text{GEN27}\\ \text{GEN27}\\ \text{GEN7}\\ \text{SCRU7}\\ \text{SCRU7}\\ \text{SCRU7}\\ \text{SCRV7}\\ \text{SULF7}\\ \text{SULF7}\\ \text{SULF7}\\ \text{SULF7}\\ \text{CAUS7}\\ CAU$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SW1X7<br>SW2X7<br>SW3X7<br>SW4X7<br>TEA7                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} \text{TWL1}\\ \text{S}_2\text{O}_5^{-2} (\text{AQ})\\ \text{CAUS7}\\ \text{CAUX7}\\ \text{CLSF7}\\ \text{GENE7}\\ \text{GENX7}\\ \text{SCRU7}\\ \text{SCRU7}\\ \text{SCRX7}\\ \text{SULF7}\\ \text{SO}_2 (\text{V,AQ})\\ \text{CAUS7}\\ \text{CAUX7}\\ \text{CLSF7} \end{array}$                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

# Chapter E3 Creating a User-Added Electrolyte Model

# Available Tools for Creating Electrolyte Models

Users can develop their own user-added electrolyte models for use in Electrolytes versions of PRO/II by using Chemistry Wizard version 3.1 from OLI Systems, Inc.This upgrade includes OLI's new state-of-the-art Mixed Solvent Electrolyte (MSE) chemistry model that enables chemical process simulations that heretofore were not possible to accomplish.

Starting with PRO/II version 8.0, OLI Systems, Inc. assumed responsibility for documenting the tools they supply. Because that documentation is the most current, the instructions that previously appeared in this chapter have been removed.

The PRO/II installation package includes the following documentation to instruct users in generating their own electrolyte models. During installation, these files may be copied to the \Manual\OLI subdirectory of the PRO/II installation directory.

- OLI Chemistry Wizard User Guide provides complete documentation of the new tool set. This Guide identifies the current version of the Chemistry Wizard used by PRO/II.
- PRO/II-OLI 6.6\_Components.xls, a Microsoft Excel spreadsheet, provides an expanded list of electrolyte components as included in the 40 pre-defined systems installed with PRO/II. The 5.6, 6.6, and 7.0 versions of the predefined electrolyte data base files all contain the same slate of electrolyte species and components.

Both documents are included on the PRO/II installation disk.

# Compatibility with Previous Versions of PRO/II

Formerly, PRO/II incorporated version 5.6, and then version 6.3 of the OLI electrolytes calculation engine. These versions used the Electrolyte Utility Package (EUP) provided by OLI Systems, Inc., to generate electrolyte models. This program now is obsolete.

Beginning with PRO/II version 7.1, PRO/II upgraded to OLI engine version 6.6. Also, the EUP was replaced by the newer OLI Chemistry Wizard version 1.0. Concurrently, OLI Systems assumed responsibility for support and documentation of the newer tools. This program also is obsolete.

Beginning with version 9.1, PRO/II upgraded to version 8.2.4 of the OLI engine and the accompanying Chemistry Wizard version 3.1. These versions of the tools currently are used by PRO/II.

*Note:* All of the older tools mentioned in this section now are obsolete and no longer are available. When creating new electrolyte models, be sure to use the current version of the Chemistry Wizard.

*Note:* While the older tools no longer are available, older electrolyte models created by using them still function properly in PRO/II. Specifically, PRO/II still is able to translate and use electrolyte models created for earlier OLI engine versions 5.6 and 6.6. However, we urge all electrolyte users to upgrade to the latest version at their earliest convenience.

# Chapter E4 Electrolyte Effects In Simulations

# Overview

Throughout the development of PRO/II Electrolytes, a major goal has been to integrate the Electrolyte thermodynamic methods seamlessly into PRO/II's graphical user interface (GUI). In other words, as far as the unit operations are concerned, PRO/II Electrolytes should operate as "just another thermodynamic method." There are several units still unavailable for use with Electrolytes, while others have partial functionality or other special considerations. This document discusses work-arounds, where possible, for these limitations.

# **General Considerations**

The most fundamental consideration that can make PRO/II Electrolytes different from other thermodynamic methods is that it is completely tied to the flash algorithm, K-value, enthalpy, and density methods as developed by OLI Systems Inc. (Morris Plains, N.J.). OLI's flash algorithm does not work exactly the same as the "normal" flash in PRO/II. In some ways that is beneficial, but it can create problems for a few PRO/II unit operations. The following are important differences between the two, along with statements regarding the consequences of those differences:

- There are conditions (most commonly where there is no aqueous liquid phase) in which OLI's thermodynamic method is simply not applicable. In such conditions, the flash will usually fail to converge. This is in contrast to most non-electrolyte PRO/II thermodynamic methods, in which the flash will usually return some sort of an answer even if you have chosen an inappropriate method for the conditions.
- There are occasionally valid conditions for which OLI's flash fails to converge. The most common of these failures occurs in adiabatic flashes with nearly pure fluids that cross a phase boundary; this case will be discussed below in Simple HX. The only other known significant problem is that OLI can have problems converging a flash in which a large amount of a sparingly soluble solid will precipitate out. This problem is alleviated somewhat for internal flowsheet streams by implementing

an initial guess for solids based on the solids in the feed. This can be done for external feed streams by putting an estimate of the solid that will precipitate on the SOLID statement for the stream.

- There are some thermodynamic quantities that OLI does not calculate. In particular, OLI does not return values for the entropy or heat capacity of electrolyte streams. This means that electrolyte thermodynamic methods cannot be used for units that require entropy, such as the Gibbs reactor. Some units also use heat capacity internally; in some cases special adjustments have been made to the code for electrolyte thermodynamic methods.
- The list of specifications recognized by OLI's flash is different from that recognized by PRO/II's flash. Many of the specifications can be translated, but some (such as isentropic flashes) cannot.
- OLI, under the current release of PRO/II Electrolytes, will now do liquid/liquid equilibrium (LLE); that is, it can handle a second (organic) liquid phase. However, this capability is limited to non-column unit operations such as the flash drum and the splitter.

#### SPEC, DEFINE, VARY

In general, all of the flowsheet parameters as listed in Section 43 of the PRO/II Keyword Manual are available for cross-referencing, and anything that can be varied with other thermodynamic methods can be varied with electrolytes. There are some stream properties (for example, D86 and WFRAC) that do not make sense for aqueous electrolyte streams.

In addition, the electrolyte-specific stream property pH is available for cross-referencing.

# **Basic Unit Operations**

The following table indicates which unit operations support the use of the Electrolyte module.

| Table E4-1: Unit Operations That Support Electrolytes                                                             |                                                      |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|
| Support Electrolytes                                                                                              | NO Electrolyte Support                               |  |  |  |
| Flash                                                                                                             | Compressor                                           |  |  |  |
| Pump, Valve, Mixer, Splitter                                                                                      | Expander                                             |  |  |  |
| Column ELDIST<br>(Electrolyte Algorithm)                                                                          | Column (All algorithms except ELDIST)                |  |  |  |
| Heat Exchangers<br>Simple, Rigorous, LNG,<br>ACE                                                                  | Heat Exchangers<br><b>Furnace</b> (Fired Heater)     |  |  |  |
| Reactors<br>Batch,<br>Conversion,<br>Equilibrium                                                                  | Reactors<br>Gibbs,<br>CSTR,<br>Plug Flow             |  |  |  |
| Solids Handling<br>Counter-Current Decanter<br>Crystallizer<br>Dissolver<br>Filtering Centrifuge<br>Rotary Filter | Solids Handling<br>Dryer<br>Freezer<br>Melter        |  |  |  |
| Utilities<br>BVLE<br>HCURVE                                                                                       | Utilities<br>HEXTABLES<br>Hydrates<br>Phase Envelope |  |  |  |
| Calculator (see DEFINE)                                                                                           |                                                      |  |  |  |
| Controller, Optimizer                                                                                             |                                                      |  |  |  |
| Ріре                                                                                                              |                                                      |  |  |  |

### Flash Drum

As with all flash-type units, the most important caution is not to use electrolyte thermodynamic methods at conditions where it is not valid. Apart from that, most of the functionality of the unit is available for electrolytes. The flash drum is able to handle a second (organic) liquid phase, as well as a vapor and/or precipitated solid phase. As mentioned before, the ISENTROPIC flash is not available. The DEWHC and DEWWATER options are not available (or meaningful) because electrolyte methods do not decant water.

The TPSPEC construct is currently limited with electrolytes. The one added feature is the ability to SPEC the pH of an outlet liquid stream. The only other internal flash spec allowed is a vapor or liquid flowrate as a fraction of the molar flowrate of a stream that is the only feed to the unit:

```
SPEC STRM=L1, RATE, RATIO, STRM=F1, RATE, VALUE=0.8
```

The REFFEED construct may also be used to reference a combined unit feed. One can simulate any other TPSPEC by putting the flash drum inside a controller loop.

For example, to specify a liquid weight fraction:

CONTROLLER UID=C1 SPEC STRM=L1, COMP=2, FRACTION(W), VALUE=0.3 VARY FLASH=FL1, TEMP

## Pump, Valve, Mixer, Splitter

These units all work normally with electrolytes. There is a potential problem in the Valve, in which the adiabatic flash may fail to converge for a nearly pure fluid if the user is crossing a phase boundary. Frequently, this may be alleviated simply by taking the valve in two (or more) steps; a stream that will not converge when being throt-tled from 50 to 15 psi may converge if it is taken to 20 psi in one valve and then down to 15 in a second valve (in the second case it gets a better initial guess). Alternatively, the valve can be simulated by putting an ISOT flash (or a vapor-fraction-specified flash) inside a controller with a controller specification of zero duty on the flash.

# **Compressor or Expander**

Both of these units require entropy and are consequently not available with PRO/II Electrolytes. There are, however, still cases where they may be used in electrolyte flow sheets. For example, if the units operate only on a vapor phase (steam, for example), there is no reason not to use a non-electrolyte thermodynamic method. Also, if the stream in question is nearly pure water, the units may be replaced by a flash drum to give the DP in the flowsheet, and then they may be modeled separately using a pure water stream to design the unit and feed back the correct temperature for the flash drum.

#### Pipe

This unit is functional with PRO/II Electrolytes. The Pipe might have problems doing two-phase flow with nearly pure water streams because it does adiabatic/fixed-duty flashes on which OLI may fail. Of course, the Pipe requires viscosities and sometimes surface tensions. See the comments on Transport Properties below for availability in regards to electrolytes.

#### **Heat Exchangers**

#### Simple HX

The full functionality of this unit, including all the Spec types, is available to PRO/II Electrolytes.

There is, however, one commonly encountered condition that can cause a problem: when the hot side of an exchanger is condensing steam (in the case of a multi-effect evaporator, the steam may come as the vapor from the cold side of another HX). The HX does a fixed-duty flash on this stream. Unfortunately, OLI has great difficulty converging for pure steam crossing the two-phase region. The remedy for this situation is to use non-electrolyte thermodynamic methods for the side of the HX that uses condensing steam; because it is a pure water stream, there is no need to use electrolyte thermodynamic methods anyway.

## Rigorous HX

This unit is fully functional with PRO/II Electrolytes.

## LNGHX

This unit is fully functional with PRO/II Electrolytes. The comments regarding the use of condensing steam (see the HX discussion above) apply here as well.

# **Electrolyte Distillation Column Algorithm (ELDIST)**

This column algorithm was designed to solve non-ideal aqueous electrolytic distillation columns involving ionic species. It uses a Newton-Raphson method to solve the mass balance, vapor-liquid equilibrium, and specification equations simultaneously. The K-values and enthalpies are supplied by the electrolyte thermodynamic model.

The Electrolytic Column Algorithm is selected from the *Column Algorithm* drop-down list in the *Column* dialog box.

*Note:* Electrolytic thermodynamic models support only VLE, and so total phase draws are not permitted.

Advantages and disadvantages of the Electrolytic Column Algorithm follow:

- Advantages
  - Rigorously models ionic equilibrium systems.
  - Solves highly non-ideal distillation columns.
- Disadvantages
  - Side columns are not supported.
  - Pumparounds and tray hydraulics are not available
  - Certain column specifications and variables are not permitted.

For the most part, the functionality of ELDIST is the same as that of Chemdist. That means, for example, that pumparounds are not allowed, and the range of Specs available is limited. In contrast to Chemdist, ELDIST does not allow the specification of component flows or mole fractions in liquid product streams. This is because the presence of ionic reactions sometimes makes it ambiguous as to the "correct" way to report the composition of a liquid (this is the problem known as "reconstitution"). It should be noted that, as with other units, non-allowed Specs may be met by putting the column inside a controller or optimizer. Another limitation of ELDIST is neither VLLE distillation nor liquid-liquid extraction is available. Column hydraulics also are unavailable at present, but may be enabled in the future.

Because electrolyte systems often are very non-ideal, ELDIST sometimes has difficulty converging. Supplying initial estimates for column tray temperatures and/or vapor-liquid flows (perhaps obtained by solving a simplification of the problem) will often aid convergence. Complete initial estimates (including compositions) can be saved from one run with the PRINT PROFILE option. These estimates not only help similar columns converge, but they also save calculation time because the ELDIST initial estimate generator is somewhat time consuming.

#### Reactors

#### Equilibrium and Conversion Reactors

It should be remembered that, in PRO/II Electrolytes, you do not necessarily need a Reactor to get a reaction. For example, water, NaOH and HC1 will yield NaCl and H<sub>2</sub>O in a flash drum or any other unit that does a flash. For reactions in aqueous solution that involve only a "rearrangement" of ions, the Reactor is not necessary.

If it is desired to use a reactor with Electrolyte thermodynamic methods, the user is currently limited to isothermal mode with the NOHBAL option turned on. These limitations will probably be lifted in later releases of PRO/II Electrolytes. Of course, fixed-duty mode can be simulated by putting an isothermal reactor in a control-ler loop.

#### Gibbs Reactor

This unit requires entropy, and therefore cannot be used with electrolyte thermodynamic methods. Again, since PRO/II Electrolytes performs a simultaneous phase and chemical equilibration, the functionality of a Gibbs reactor would be redundant if the only reactions were ionic rearrangements.

#### Plug Flow and Continuously Stirred Tank Reactors

These units are not currently available with Electrolyte thermodynamic methods. The primary reason for this is that neither unit is able to handle components with phase type LS. Almost all reasonable electrolyte models would contain such components.

## **Solids Handling Utilities**

#### Dryer

This unit is not available with Electrolyte thermodynamic methods. The main reason for this is that OLI has difficulty converging flashes with lots of solid and little water. These would be conditions likely to arise in the dryer. It might be possible to work around this last problem by stringing multiple dryers in series to model one unit.

#### RFilter, FCentrifuge, CCDecanter

These units have their full functionality with Electrolyte thermodynamic methods. There is, however, one thing to watch out for. These units are not designed to do phase equilibrium calculations, so if the conditions are such that more solids will precipitate (or dissolve) in the unit, solids may appear (or disappear) in the filtrate stream following solution of the unit.

#### Dissolver and Crystallizer

These two units may be used successfully with PRO/II Electrolytes if care is taken in setting up the problem. If the only purpose is to produce solid precipitate (or dissolve solids) to the equilibrium concentration, a flash drum should be used instead. The ability of OLI's flash to do SLE is a big advantage over PRO/II's non-electrolyte thermodynamic methods in this case. The crystallizer and dissolver should be used with electrolytes in only two cases:

- When the process does not reach equilibrium.
- When it is important to know the particle size distribution (PSD) of the product.

Both of these units are unable to go all the way to equilibrium (of course, this is not an issue unless the kinetics are zero-order). In such cases, the warning message will often say something similar to "supersaturation limit reached." The dissolver unit will also fail at conditions such that all of the solid will dissolve. A flash drum should be used in such cases.

As for the kinetics in these units, the parameters must be adjusted to match experimental data. While the dissolver has a correlation to predict mass transfer, that correlation is completely inappropriate for electrolyte solutes. When testing different parameters to match data, it is best (because of the problems getting to complete equilibrium) to start with "slow" kinetics and work your way up.

For electrolytes, both of these units operate only in isothermal mode. Fixed-duty conditions may be simulated by putting the unit in a controller loop.

#### Melter/Freezer

This unit exists only to circumvent non-electrolyte PRO/II's inability to do SLE, so it has no useful purpose for electrolytes and is therefore disallowed.

#### Calculator

See comments above regarding what may be accessed with the DEFINE statement.

#### Stream Calculator

This unit is fully functional with PRO/II Electrolytes.

## **Flowsheet Control**

You are likely to get warnings in electrolyte problems about components with undefined separation factors. This is because a PRO/II Electrolytes model will add any components it has to what is on the LIBID statement, so there will be more components in the simulation than the user might have thought. As long as none of these added components are produced in the simulation, these warnings may be safely ignored.

## Miscellaneous

It is also possible to encounter a flash failure in this unit when doing feed blending, such as is commonly done to figure the rate of a makeup stream. This is because the unit first does an adiabatic flash on the entire blended feed, even if only one or two components are going to be picked out with an FPROD statement. In some cases, even though you may just be figuring the makeup rate of a pure water stream, the blended feed may put you in a composition region that OLI cannot solve (for example, 1 mole of H2O with 100 moles  $CaCO_3$ ). The workaround for this case, if all you want is water in the makeup stream, is to make a dummy stream of pure solid  $CaCO_3$  and put it into the blend with a factor of whatever is necessary (-100, for example) to get rid of that component.

## HCURVE

This unit works normally with Electrolytes. However, since electrolyte thermodynamic methods do not give you heat capacity or entropy, those properties will be missing in the reports. The pseudocritical and petro reports are available, but are unlikely to give meaningful quantities for electrolyte streams.

## Phase Envelope

The Phase Envelope is available only with SRK and PR thermodynamic methods and is therefore disallowed with Electrolytes.

#### Hydrates

The Hydrates unit does not have a method set associated with it; therefore, it may be used with a stream exiting an electrolyte unit.

#### BVLE

The BVLE unit may be used with Electrolyte thermodynamic methods, provided water is one of the two components chosen for the unit's calculations. You must be careful not to specify the BVLE unit such that it goes into a composition region where the flash will not solve because there is too little water. It is probably preferable to do BVLE-type analysis using the electrolyte flash capabilities in the *Chemistry Wizard* software available from OLI, Inc.

#### Hextables

The Hextables utility is not yet available with Electrolyte thermodynamic methods. The controllers, the optimizer, and recycle data all work normally with electrolytes. See above, however, for comments on what parameters can be used in SPEC and DEFINE statements. With controllers and the optimizer, one must be careful not to allow a VARY statement to create a condition where OLI cannot solve a flash.

#### Case Study, Restart, Interactive

These options work exactly the same for Electrolyte problems as for other problems.

#### **Depressuring Unit**

This unit is currently disallowed with Electrolytes.

## **Considerations Regarding Transport Properties**

Currently, all transport property methods are allowed through keywords with PRO/II Electrolytes (though most electrolyte models will have at least one component for which TRAPP is not valid). Vapor-phase transport methods should be chosen without regard to the electrolyte nature of the problem; PETRO would typically be the best option. For aqueous electrolyte streams, the recommended method for the liquid phase is PURE, since the other methods in PRO/II are primarily intended for hydrocarbon streams. The resulting transport properties will, for most liquid streams, be very close to the values for pure water.

# **Output Considerations**

To see what is going on in Electrolyte flowsheets, the user should always use at least the PART setting (which is now the default) on the PRINT ION flag. The user stream report writer works normally with Electrolytes. There are, of course, several quantities, such as heat capacities and entropies, which are not available. Several others, such as RVP and GHV, will not be meaningful for electrolyte streams. In addition, quantities such as NBP and TR, which depend on averages of pure-component numbers, may not be meaningful because some of the components in an electrolyte problem are likely to be salts, for which (for example) there is no NBP or TC in the library. For some of these numbers, dummy numbers (usually water values) are "filled in" in the library to satisfy PRO/II input checking; averages using these numbers will not be very meaningful.

# **Speed Considerations**

Compared to most other standard PRO/II thermodynamic methods, Electrolytes is slow. This is unavoidable because it has to solve chemical equilibria simultaneously with phase equilibria. For a problem with the same number of components, Electrolytes will typically be slower than a method like SRKM or NRTL by one or two orders of magnitude.

One way to help the speed factor is to use the smallest model possible that includes all the components in the problem. It would probably be a good investment (especially if the model is going to be used many times) to generate in a small model (for example, four components) if the alternative were to use a much larger pre-generated model. Problems also run faster in "no-solids" models, and so these versions should be used if it is known that there is no chance of solid precipitation.

Because of the time that may be required for solution, it becomes more worthwhile to provide good initial guesses. Results from earlier runs may be saved and used in subsequent problems; the PRINT PROFILE option on the Column is particularly useful for this purpose. While saving profiles may not be worth the trouble for normal columns, it can be quite worthwhile for an electrolyte column.

# Index

# A

Acid systems, E2-13 Acid waste streamneutralization drums, E1-20 Amine systems, E2-12 validity ranges, E1-21 Amine towers, E1-20 Application guidelines, E1-19

# B

Balance constraints, mass and charge, E1-23 Benfield systems, E1-20, E2-33 Blended feed, E4-9 BVLE unit, E4-10

# С

Calculations invalid, E1-22 Calculator description, E4-9 stream. E4-9 Case study, E4-10 Caustic systems, E2-31 CCDecanter, E4-8 Chemdist, E4-6 Chemical equilibria, E4-11 Chlor-alkali plant processes, E1-20 Column. E4-5 Column hydraulics, E4-6 Component data example, E1-14 fixed list, E1-15 generating, E1-9 overview, E1-13 reconstituted, E1-23

Composition range, E1-21 Compressor, E4-4 Continuously stirred tank reactor, E4-7 Controller loop, E4-4 putting a column inside a, E4-6 putting an isothermal reactor inside a, E4-7 specification, E4-4 Convergence

difficulty, E4-5, E4-6 failure, E4-1 Crystallizer, E4-8

## D

DEFINE statement, E4-2, E4-9, E4-10 Depressuring unit, E4-10 Dew water calculations, E1-22 Dissolver, E4-8 Distillation column, E4-5 Dryer, E4-7 Duty, E4-4 fixed, E4-8

#### E

Electrolyte methods acid stream neutralization, E1-20 amine towers, E1-20 Benfield processes, E1-20 chlor-alkali plant processes, E1-20 gas scrubbers/purification, E1-20 important points, E1-20 in conjuction with nonelectrolyte methods, E1-4 mixed thermodynamic applications, E1-18

scale formation prediction, E1-20 solid salts manufacturing, E1-20 sour water strippers, E1-20 underground injection well studies, E1-20 Electrolyte models acid systems, E2-13 amine systems, E2-12 Benfield systems, E2-33 caustic systems, E2-31 component index, E2-40 hydrate systems, E2-36 index, E2-9 invalid calculations, E1-22 list of built-in, E2-1 LLE systems, E2-36 mixed salt systems, E2-17 pregenerated, E2-1 scrubber systems, E2-34 selecting, E1-8 sour water systems, E2-25 summary, E2-12 supported, E1-3 Electrolytic column algorithm (ELDIST) advantages, E4-6 disadvantages, E4-6 uses, E4-5 ENTHALPY = ELECexample, E1-18 Entropy, E4-2, E4-9 Entropy and heat capacity calculations, E1-22 Equilibrium calculations, E4-8 not reached. E4-8 Expander, E4-4

# F

Fail to converge, E4-1 FCentrifuge, E4-8 Feed, blended, E4-9 Feeds near saturation, E1-23 with little or no H2O, E1-22 Flash alternative to dissolver, E4-8 conditions, E4-1 duty, E4-4 functionality, E4-3 isentropic, E4-2, E4-4 ISOT, E4-4 pressure drop, E4-5 temperature, E4-5 TPSPEC, E4-4 Flowsheet control, E4-9 FPROD statement, E4-9 Free water decant, E1-22 Freezer, E4-8 Fugacity calculating coefficients, E1-17 vapor phase, E1-17

# G

Gas scrubbers/purification, E1-20 General data overview, E1-11, E1-12 General reactor, E4-7 Gibbs reactor, E4-2, E4-7

# Η

HCURVE, E4-9 Heat capacity, E4-2, E4-9 Heat exchanger LNGHX, E4-5 rigorous, E4-5 simple, E4-5 Hextables utility, E4-10 Hydrate systems, E2-36 Hydrates unit, E4-10

# I

Index component, E2-40 electrolyte models, E2-9 Initial estimate generator, E4-7 Interactive option, E4-10 Ionic species, E4-5 Ionic strength, E1-22 Isentropic flash, E4-2 Isothermal flash example, E1-23

# K

Kinetics, E4-8

# L

LIBID statement, E4-9 Liquid phase, pure, E4-10 Liquid/liquid equilibrum (LLE), E4-2 Lists components, E1-15 thermodynamic methods, E1-15 LLE systems, E2-36 valiidy ranges, E1-21 LNGHX heat exchanger, E4-5

## Μ

Melter, E4-8 Mixed salt systems, E2-17 Mixer, E4-4

# Ν

Newton-Raphson method, E4-5 Nonaqueous electrolyte systems, E1-22 Non-ideal aqueous electrolytic distillation, E4-5 NRTL (Chen's) method, E1-19

# 0

OLI method, E1-19 Output limitations, E4-11

# P

Particle size distribution (PSD), E4-8 PETRO transport properties, E4-10 pH, E4-4 Phase envelope, E4-9 equilibria, E4-8, E4-11 type LS, E4-7 Phase boundary, E4-4 Pipe, E4-5 Plug flow reactor, E4-7 Pregenerated models, E2-1 Pressure drop, E4-5 range, E1-21 Print profile option, E4-6 PRO/II's graphical user interface (GUI) capability, E4-1 limitations, E4-1 Pump, E4-4

# R

Reactor continuously stirred tank reactor, E4-7 general, E4-7 Gibbs, E4-7 isothermal, E4-7 plug flow, E4-7 Reconstituted components, E1-23 References, E1-24 Restart option, E4-10 RFilter, E4-8 Rigorous heat exchanger, E4-5

# S

Scale formation prediction, E1-20 Scrubber systems, E2-34 Simple heat exchanger, E4-5 Solid salts manufacturing, E1-20 Solid species, E4-2 Solids drving, E4-7 filtering, E4-8 no-solids models, E4-11 producing precipitate, E4-8 Solids handling utilities ccdecanter, E4-8 crystallizer, E4-8 dissolver, E4-8 drver, E4-7 fcentrifuge, E4-8 freezer, E4-8 melter, E4-8 rfilter, E4-8 Sour water systems, E1-20, E2-25 SPEC statement. E4-2 SPEC statements, E4-10 Speed, E4-11 Splitter, E4-4 Stream calculator, E4-9 Stream data input, E1-22 Supersaturation limit, E4-8 Surface tension, E4-5

# Т

Temperature range, E1-21 Thermodynamic data composition range, E1-21 fugacity, E1-17 pressure range, E1-21 temperature range, E1-21 Thermodynamic methods application guidelines, E1-19 available, E1-19 built-in, E1-2 choosing multiple, E1-16 fixed list, E1-15 limitations, E4-1 mixed, E1-18 non-electrolyte, E4-4 NRTL (Chen's), E1-19 OLI, E1-19

special case, E1-22 transport properties, E1-18 Transport properties, E1-18 limitations, E4-10 True aqueous solution species, E1-23

## U

Underground injection well studies. E1-20 Unit operations BVLE, E4-10 calculator, E4-9 calculator, stream, E4-9 ccdecanter, E4-8 compressor, E4-4 controller loop, E4-4 crystallizer, E4-8 dissolver, E4-8 distillation column, E4-5 dryer, E4-7 expander, E4-4 fcentrifuge, E4-8 flash, E4-3 flowsheet control, E4-9 freezer, E4-8 HCURVE, E4-9 heat exchanger, LNGHX, E4-5 heat exchanger, rigorous, E4-5 heat exchanger, simple, E4-5 hextables utility, E4-10 hydrates, E4-10 melter, E4-8 mixer, E4-4 phase envelope, E4-9 pipe, E4-5 pump, E4-4 reactor, continuously stirred tank reactor, E4-7 reactor, general, E4-7 reactor, Gibbs, E4-7 reactor, isothermal, E4-7 reactor, Plug flow, E4-7 rfilter, E4-8 SPEC, DEFINE, VARY, E4-2 splitter, E4-4 supported, E1-4, E4-3 valve, E4-4

# V

Validity ranges Amine systems, E1-21 general, E1-21 LLE systems, E1-21 Valve, E4-4

Vapor-phase fugacity

calculating, E1-17

methods for determining coefficients, E1-17 VARY statement, E4-2, E4-10 Viscosity, E4-5

# W

Water, removing, E4-7